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Deep Learning (DL) models may introduce reliability challenges in the underlying DL frameworks. These
frameworks may be prone to bugs that can lead to crash or wrong results, particularly when involving complex
model architectures and substantial computational demands. Such framework bugs can disrupt DL applications,
impacting customer experience and potentially causing financial losses. Traditional approaches to testing DL
frameworks face limitations in adapting to the vast search space of model structures, diverse APIs, and the
complexity of hybrid programming and hardware environments. Recent advancements using Large Language
Models (LLMs) have improved DL framework fuzzing, but their efficacy depends heavily on the quality and
diversity of input prompts, which are often constructed using single-framework data.

In this paper, we propose an innovative approach for enhancing test generation for DL frameworks
by leveraging “mirroring issues”—analogous bugs identified across different frameworks with common
functionalities. Our approach is inspired by the fact that DL frameworks, such as PyTorch and TensorFlow,
often share common bugs due to dependencies, developer errors, or edge-case inputs. We develop CrossProbe
that utilizes LLMs to effectively learn from existing issues of one framework and transfer the acquired
knowledge to generate test cases for finding mirroring issues in another framework, thus enabling cross-
framework bug detection. To overcome the challenges of test case generation arising from the incompatible
functionalities and different implementations between frameworks, we introduce three processes: alignment,
screening, and distinction. These processes help mitigate transfer errors by establishing API pair databases,
filtering unsuitable cases, and highlighting cross-framework distinctions. Experiments demonstrate that
CrossProbe is efficient by saving 36.3% iterations of generation, and achieves a 25.0% higher success rate in
issue transferring compared to existing state-of-the-art LLM-based testing techniques. CrossProbe detects
24 unique bugs using its transferred knowledge. Out of them, 19 are previously unknown and each requires
cross-framework knowledge in deep learning for identification.
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1 Introduction

Deep Learning (DL) techniques have become a widespread solution to tasks like classification
and generation due to their impressive abilities. In the last decade, DL models are widely used
across multiple fields and domains, such as medical diagnosis [2, 30], autonomous driving [20], and
natural language processing [38]. These models often rely on a large number of parameters and
deep architectures to handle complex problems and achieve high accuracy. As a result, the operation
of DL models, including training, inference, and optimization, can be computationally intensive
and vulnerable to errors. In particular, the bugs inside frameworks can severely compromise the
reliability of deep learning applications or even hinder their deployment on users’ devices, resulting
in negative impacts on customer experience, financial losses and, in some cases, even physical
injury or fatalities [5, 12, 17].
To test deep learning frameworks, the testing cases usually involve an input model and tensor

operations on the model. Traditional approaches show limitations when generating test cases for
deep learning frameworks. The integration of hybrid programming languages and the need to
support diverse hardware and platforms pose substantial difficulties for approaches relying on
static analysis [25, 26]. Besides, it is also complex to dynamically generate test cases due to the
huge search space of model structures and operation APIs [7, 14]. Due to such challenges, existing
approaches either restrict the searching within specific DL models [15, 16, 41, 48, 49] or focus on a
partial subset of APIs [9, 11, 21].

Recently, Large Language Models (LLMs) have demonstrated remarkable capabilities in enhanc-
ing the testing of deep learning frameworks [7, 8, 13, 45], by generating precise and targeted test
cases. The core of LLM-based generation lies in the quality of input prompts. Existing approaches
often refer to various sources of data of the framework under test to mine key information for
prompt construction, including historical issues [8, 13], open-source examples [21] and documen-
tation [45, 46]. The mined information is then formatted using prompting techniques such as
chain-of-thought [43], few-shot learning [40], and retrieval-augmented generation [18] to help
LLMs learn the characteristics from existing data and generate new test cases. However, these
approaches may encounter bottlenecks when the available data is insufficient. As test iterations
progress, relying on information from a single framework may no longer be adequate to uncover
untested parts inside the framework. Additionally, the knowledge learned by LLMs is specific to
a single framework and cannot be effectively transferred across frameworks. These challenges
highlight the need for leveraging diverse and transferable information to enhance LLM-based test
generation, ultimately enabling comprehensive testing of deep learning frameworks.
Mirroring issues. We extend the scope of information mining from a framework itself to its anal-
ogous frameworks, inspired by a key insight that frameworks providing analogous functionalities
often share analogous types of bugs. Take a numerical bug shown in Figure 1 as an example. In
PyTorch (left), discrepancies have been reported between computations executed on a CPU and an
Apple GPU (MPS). When the same computation is ported to TensorFlow (right), analogous discrep-
ancies also arise. We refer to such pairs of issues as mirroring issues, which are characterized by 1)
their involvement with analogous input data and API functionalities, and 2) their ability to trigger
analogous bugs in two different frameworks. Mirroring issues prevalently exist in frameworks with
analogous purposes due to several factors:
• similar dependencies that different frameworks rely on,
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• common mistakes that developers may make, due to their analogous interpretations of the
problem domain, and

• shared edge cases that occur in analogous functionality and tend to be overlooked during testing.

conv = nn.Conv1d(1, 65537, 3, padding=1)
x = torch.ones([1, 1, 3])

y_cpu = conv.to("cpu")(x.to("cpu"))
y_mps = conv.to("mps")(x.to("mps"))

print("Equal:", torch.equal(
      y_cpu, y_mps.to("cpu")))

conv = tf.keras.layers.Conv1D(
 filters=65537,kernel_size=3,padding='same')
x = tf.ones([1, 3, 1])

with tf.device('/CPU:0'):
    y_cpu = conv(x)
with tf.device('/GPU:0'):
    y_gpu = conv(x)

print("Equal:", np.allclose(
      y_cpu.numpy(), y_gpu.numpy()))

>>> Equal: False >>> Equal: False

Setup the operation and input

Apply operation on CPU and GPU separately

Check the result output

Fig. 1. An Example of Mirroring Issues between PyTorch and TensorFlow

Our work. In this work, we generate mirroring issues from existing issues in one DL framework
to enhance test case generation for another DL framework. Our approach starts with identifying
issues that involve analogous functionalities in both frameworks as the candidates for generating
mirroring issues. We then leverage LLMs to transfer these candidate issues into code that provides
the analogous functionality but is compatible with the other framework. This transfer process faces
significant challenges that can result in low success rate for valid code generation, due to differences
in code implementation across frameworks. The transferred code may suffer from API misuse,
incorrect logic, or missing necessary statements, leading to false positives and false negatives in
the testing process. Specifically, we observe during code transfer, LLMs frequently encounter the
following two major obstacles:
Obstacle #1. Significant adaption gap for functionalities. The first primary obstacle in

transferring code between frameworks is the difficulty in selecting the appropriate APIs. Although
different deep learning frameworks share some core functionalities, it requires specialized knowl-
edge to figure out the corresponding APIs for different frameworks, because the naming conventions
and design patterns usually vary. Besides, a number of exclusive APIs or data types remain incom-
patible across frameworks, further complicating the transfer process. For instance, PyTorch and
TensorFlow, the two most widely-used DL frameworks, offer the same core functionalities such
as tensor operations and creating a model from layers. However, their differences in distributed
structures and data processing workflows are substantial. The involvement of different packages,
such as torchvision and Keras, renders the porting process complex. It can go beyond the capability
of LLMs to adapt to the significant differences. As a result, the test cases generated by LLMs can be
invalid, failing to reflect the original behavior of the source issues.

Obstacle #2. Subtle usage discrepancies in APIs. Even when the appropriate API is identified,
the transfer remains challenging due to the subtle differences in API usage. For example, as
illustrated in Figure 1, PyTorch and TensorFlow adopt distinct coding styles for GPU acceleration.
These differences are not merely syntactic but extend to variations in parameter order, naming
conventions, default values, and input data formats. Without a precise understanding of API
definitions and their intended functionalities, the generated code may be prone to critical errors,
which can degrade the efficiency of the testing. To enhance the accuracy of code generation, LLMs
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should be enhanced with contextual awareness of API usage and the capability of adapting to
varied coding conventions.

Tomitigate these obstacles and enhance the quality of generated test cases, we introduce three key
processes: alignment, screening and distinction. They leverage knowledge of functionality-equivalent
APIs across frameworks to facilitate accurate code transfer:

Alignment is the data mining and analysis process for the target pair of frameworks. Since
API discrepancies are the primary challenge in code transfer, identifying the most appropriate
API replacements is crucial. To this end, we construct a database of API pairs with analogous
functionalities and usages across framework. We train a classification model from the framework
documentation based on CodeT5 [39] to characterize the APIs more accurately, and produce a more
comprehensive database compared with the simple keyword matching approach. This database
serves as an effective reference for adapting the code differences.

Screening is designed to filter inappropriate issues to reduce the risk associated withObstacle #1.
Using the database constructed by alignment, we can estimate the functionality gap to adapt the
code from one framework to the other. For a candidate issue, if the corresponding API is not
found in the alignment database, the adaption gap is considered huge and the likelihood for LLMs
to generate a valid test case decreases significantly. Therefore, we discard the input issues with
significant adaption gap, and the cases with APIs in the alignment database are preferred.

Distinction provides prompts enriched with structured knowledge that guides LLMs in adapting
code in a chain-of-thought manner. These prompts highlight the similarities and differences between
API pairs. They reference the names of aligned API pairs for LLMs to make appropriate API
substitutions, and include comparisons and examples of API usage that enable LLMs to adapt the
code by converting each parameter and following sample code step by step. These prompts can
assist LLMs in addressing Obstacle #2 and improving the accuracy of transferred code.

The above processes are implemented as CrossProbe. To evaluation its effectiveness, we compare
it with the state-of-the-art LLM-based testing techniques, including FuzzGPT [8] and YanHui [13].
CrossProbe achieves a 25.0% increase in the success rate of transferring issue code. We also inves-
tigate its generation efficiency by conducting an ablation study. The study shows that CrossProbe
can detect three times as many bugs with 36.3% fewer generated test cases, compared with the
baseline approach without our designed processes. We review and characterize the bugs detected
by CrossProbe, and find 19 previously-unknown bugs. They are are difficult to trigger with the
knowledge of one single framework, and CrossProbe manages to expose them with the knowledge
transferred from other frameworks.
Contributions. This work makes the following main contributions:

• The introduction of cross-framework knowledge to the testing of DL frameworks. Our
study reveals that, with proper adaptation, test cases from one DL framework can be effectively
used to test other DL frameworks, resembling practices in compiler and network protocol
testing [24, 45]. We characterize the types of bugs that can be exposed by cross-framework
testing, particularly those related to shared dependencies and complex operations.

• An effective LLM-based approach for cross-framework bug detection. We develop
CrossProbe, a practical framework to learn from the issues in one framework, and trans-
fers the tests to detect bugs in another framework. CrossProbe overcomes the obstacles in API
selection and usage adaptation during code transfer, and produces a high rate of correct code
to achieve effective cross-framework bug detection.

• Complementary defect discovery compared with fuzzing. CrossProbe has detected 19
bugs, which are adapted from the cases in other frameworks. Fuzzing approaches are difficult
to cover such cases by mutation, because the knowledge of potential testing points is often
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limited to the target framework itself. Cross-framework test cases can enhance the framework
testing by introducing testing points from other frameworks. As of our submission, ten bugs

have been confirmed by developers, three are resolved, and six are awaiting responses.

2 Preliminaries

2.1 Code Generation With Large Language Models

Large Language Models (LLMs) [10, 27, 29, 35, 37, 38] are deep learning models that can accomplish
natural language processing, including text classification, summary and generation. As the amount
of training text increases rapidly, the models keep evolving and have demonstrated impressive
capabilities on the NLP tasks. The recent popular LLM model series, Llama [1], contains up to 405
billion of parameters in version 3.2. To accomplish code-specific tasks, some variants of LLMs are
introduced by adding code into training data, or fine-tuning the original model with code-related
contexts. Typical code-specific LLMs include CodeT5 [39], CodeLlama [32], and StarCoder [22].
LLMs can accept inputs in the form of prompts [31, 44], which is a flexible and light-weight

manner because the expensive retraining process of models can be avoided. To improve the quality
of the generated code, various prompting techniques have been proposed to arouse the reasoning
capability of LLMs. This technique involves dividing each prompt into intermediate segments
that explicitly incorporate the reasoning process, allowing for greater clarity and structure in
task execution. By leveraging these incremental steps, this approach has been demonstrated to
significantly enhance the accuracy of the responses generated by LLMs [8, 13, 19, 47]. For instance,
intermediate segments may include specific instructions on processing previous results, detailing
the necessary formats, or outlining the constraints that must be adhered to when generating
subsequent content. These well-defined guidelines ensure that the model has a comprehensive
understanding of each stage of the task, reducing ambiguity and minimizing the potential for errors.
By adhering to this structured approach, LLMs are better equipped to generate responses that
are consistent with the desired outcomes. Consequently, this structured prompting methodology
ensures that the final outputs are more likely to meet the users’ expectations, providing an effective
pattern for handling professional requirements.
Another effective prompting technique is to utilize few-shot examples, which may offer some

specific or implicit requirements for code generation. By providing a set of relevant examples,
this method guides the LLMs in understanding the desired patterns and standards, helping them
produce more accurate and contextually appropriate outputs. For instance, FuzzGPT [8] provides the
information of API, bug description, and finally code snippets as the steps of thought. YanHui [13]
provides more comprehensive insights into the characteristics of buggy code snippets, covering
aspects such as model structure, exceptions, data types, and error causes.
Existing methods have achieved outstanding performance in code generation within a single

project. However, the generationmay fall short when it comes to transferring code between different
projects. We illustrate the possible challenges through the following motivational study.

2.2 Motivational Study

To characterize mirroring issues in deep learning frameworks and understand the challenges in
detecting them, we conduct an empirical study on the two mainstream deep learning frameworks,
PyTorch and TensorFlow.

2.2.1 Characterizing Mirroring Issues in PyTorch and TensorFlow.

Dataset construction. We first collect issues from PyTorch and TensorFlow automatically via
the GitHub API. We choose to search mirroring issues since the following latest major releases of
PyTorch and TensorFlow: PyTorch 2.4 (released on July 25, 2024) and TensorFlow 2.17.0 (released
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on July 12, 2024). We restrict our issue search scope for two primary reasons. First, we aim to
study recent issues that may have a larger impact compared to issues in older versions. Second, the
latest major releases provide stable and comprehensive features of PyTorch and TensorFlow. There
are already sufficient common functionalities between the two frameworks and a large number
of existing issues for our study. The cutoff date for our data collection is December 31, 2024. To
construct the dataset, we extract code from the following sources and only select the issues for
which we can find reproduction code.
• Code blocks in the issue reports
• External links to code snippets

– Gist: A popular GitHub service to share simple code snippets.
– CoLab: A popular platform to run Jupyter Notebook online.

Initially, we collect a total of 1,452 issues, with 813 from PyTorch and 639 from TensorFlow. Then,
we conduct an iterative labeling process following the open coding methodology [36] to produce a
comprehensive characterization of mirroring issues.

Iteration 1: We study each of the collected issues and summarize the core APIs and the concerned
functionality based on the code in the issues. This is a semi-automatic process, where we first
extract the API names and retrieve the corresponding documentation automatically. Then, we
manually summarize the main functionality of the bug reproduction code. With the summarization,
we match the pairs of PyTorch and TensorFlow issues with analogous functionalities and core APIs,
which are identified as mirroring issues between the two frameworks.

Iteration 2: Another author is involved to cross-validate the preliminary result obtained in
Iteration 1 and check whether the functionality description confirms to the bug reproduction code
for each issue. For the issues where this author does not agree with the preliminary result, the
two authors discuss them and clarify the criteria used in the analysis process. With the updated
understanding of the analysis criteria, the second author applies another round of validation
to check whether a new disagreement is introduced. Several rounds of discussions have been
conducted to reduce the disagreements.

Iteration 3: After the above calibration of the analysis process, all authors revisit each bug and
discuss to reach agreement on every pair of mirroring issues to make sure that the identified pairs
indeed reflect analogous problems in the two frameworks.

Table 1. Mirroring Issues Collected from PyTorch and TensorFlow

Total Pairs Environment Configuration Computation Format

74 25 22 19 8

Characterization results. Table 1 presents the distribution of the mirroring issues collected. In
total, we have identified 74 pairs of mirroring issues from the latest major releases of PyTorch and
TensorFlow, which consist of the following four categories:
• Environment: Issues arising from the runtime environment, including installed packages,
operating systems, and GPU hardware. For example, TensorFlow #85689 and PyTorch #143123
are mirroring issues related to the environment.

• Configuration: Issues triggered by parameter settings, custom operator behaviors, and data
type or precision configurations. For example, <PyTorch #101620, TensorFlow #65865> and
<PyTorch #108520, TensorFlow #65871> are two pairs of mirroring issues of this category.

• Computation: As operations like tensor computations are common to both frameworks,
mirroring issues can arise from certain common computations. For example, PyTorch #117757
and TensorFlow #62517 are mirroring issues related to the abs operator.
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• Formats: Issues that occur during the I/O process or the model format conversion. For example,
PyTorch #143222 and TensorFlow #77293 are such mirroring issues.

2.2.2 Challenges in Detecting Mirroring Issues via Transferring Issue-Triggering Code.

Basic CoT approach. To reveal the challenges of detecting mirroring issues between two frame-
works via transferring issue-triggering code (or reproduction code) using LLMs, we design a basic
approach, which involves simple chain-of-thought [43] prompts to convert the code that triggers
issues in one framework to the other framework. This approach is referred to as Basic CoT in the
subsequent discussions.
To understand the performance of Basic CoT, we randomly select 50 pairs of mirroring issues

from our dataset. Then we provide prompts, which follow the format demonstrated in Listing 1, to
LLMs to convert the issue-triggering code from PyTorch to TensorFlow and vice versa.

1 # Here is a code snippet which can trigger a bug in PyTorch
2 (code ...)
3 # Please convert the code into TensorFlow to find potential bugs.
4 <infill >

Listing 1. Prompt Template for the Basic CoT Approach

To assess the quality of the 100 code generation results from the Basic CoT approach, we consider
the following two criteria.
1) Syntactically valid outputs. The generated code is valid Python code with no syntax errors.
We filter out invalid outputs by applying the PyLint static analyzer first, and then actually running
the generated code and excluding those cases that produce exceptions of NameError, SyntaxError
and ModuleNotFoundError. This criterion can help assess whether a generation approach has the
ability to produce valid code for the target framework.
2) Functionality-preserving outputs. Besides being syntactically correct, the code generated
for the target framework also follows the original functionalities of the issue-triggering code for
the source framework, allowing for the detection of potential bugs in the target framework. This
criterion is designed to measure the approach’s ability of recognizing the API from the test cases
for the source framework and using the corresponding API in the target framework to generate
functionally equivalent test cases.

Table 2. Code GenerationQuality of The Basic CoT Approach

Model Outputs Syntactically Valid Functionality Preserved

gpt-4-0806 100 18 12
codellama-py-7b 100 14 11

Results. Table 2 demonstrates the results of Basic CoT when using two popular LLMs. It can
be seen that Basic CoT exhibits a low success rate and limited effectiveness in transferring code
across frameworks. We manually analyze the failed transfers by sampling 53 of the 168 invalid
code outputs. Our analysis shows that with only simple chain-of-thought prompts, LLMs would
make the following mistakes when generating test cases for the target framework: using nonex-

istent APIs (43.4%), using wrong arguments of APIs (30.2%), and incomplete code (26.4%).
Besides, among the nine transfer results with valid syntax but wrong functionalities, six are not
following the original behaviors (data or operations) and three are incomplete code leaving
some functionality unimplemented. From the sampled cases, we observe that the poor performance
of Basic CoT can be attributed to two major reasons:
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First, successful code transfer involves accurately mapping or aligning APIs between the frame-
works, which is a prerequisite for reliably generating functionally-equivalent test cases across frame-
works (Obstacle #1 mentioned in introduction). This obstacle may cause nonexistent APIs, wrong
arguments and incomplete code. For example, PyTorch has the torch.distributed.ProcessGroup
API to communicate among devices, while TensorFlow implements a different design — the training
coordinator and worker strategy. When converting an issue in PyTorch, LLMs fail to follow Tensor-
Flow’s distributed training strategy and use correct APIs. Instead, the generated code snippets try
to imitate the structure of the code that triggers the issue in PyTorch and create a non-existent
custom class called MockProcessGroup, which makes no sense to the user.
Second, in practice, it is common that different frameworks may impose unique conventions,

API parameters, or structural designs (e.g., inheritance vs. composition). It is non-trivial to generate
code adhering to the correct usage patterns required by the concerned APIs in the target frame-
work (Obstacle #2). This obstacle may cause wrong arguments, incomplete code, or the transferred
code not following the original behaviors. For example, PyTorch and TensorFlow are using different
ways to specify the computation device. While TensorFlow simply uses a string such as "GPU:1",
PyTorch requires configurations on every Tensor class for the same purpose. The LLM-generated
code for PyTorch may partially miss the .to() API call and corresponding arguments.

Motivated by the above observations, we aim to design a more effective approach for transferring
test cases between different frameworks to detect mirroring issues.

3 Methodology

To overcome the obstacles of effective code transfer across frameworks, we introduce three key
processes that are designed to distill and integrate transferrable knowledge to guide LLMs in
producing accurate outputs. The processes are termed as alignment, screening, and distinction.
This section begins with a general overview of our approach, CrossProbe, followed by a detailed
explanation of each process.

3.1 Overview

Figure 2 demonstrates the overall workflow of CrossProbe. Given two frameworks with analogous
functionalities (e.g., PyTorch and TensorFlow), CrossProbe first performs API alignment via refer-
ring to the framework documentation and establish a precise mapping between the functionalities
of the two frameworks. The mapping serves as the knowledge database to facilitate code transfer
by providing which APIs from the both frameworks are suitable for transfer, and how to use the APIs
correctly. Second, CrossProbe takes the issues from one framework (source) as input and applies
screening to identify the useful issue-triggering code for transfer, where the APIs are included in
the alignment database. Then, distinction provides effective prompts to generate the test cases for
the other framework (target). The prompt contains the description and usage of the APIs from both
frameworks and leverages chain-of-thought technique to help LLMs to generate correct transferred
code. Finally, The generated code is executed to test the target framework.

3.2 API Alignment

In the alignment process, CrossProbe aims to identify the APIs with analogous functionalities from
the two frameworks and extract their usages to establish an API mapping (i.e., pairs of analogous
APIs). For this purpose, CrossProbe first processes the documentation of each framework and
retrieves the API names and descriptions for analysis. When processing the documentation of
PyTorch and TensorFlow, we find that the two frameworks have some obviously analogous APIs,
which are named after their common operations. Some examples are listed below.
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① Alignment - extracts adaption references (Sec 3.2)

Documentation

API descrptions

· tf.constant
Creates a constant tensor 
from a tensor-like object.

· torch.tensor
Constructs a tensor by 
copying data.

· tf.add
Returns x + y element-wise.

· torch.add
Adds other, scaled by alpha, 
to input.

API descrptions
Same
names Pair

Train

Different
names · torch.ones

Returns a tensor filled 
with the scalar value 1.

?= ?=
· tf.constant
· torch.tensor
· ...

Predict

· tf.add
· torch.add
· ...

Matched API pairs

Parameters
Examples

Knowledge 
Database

GitHub issues

· torch.tensor
· torch.rand
· torch.nn.Conv1d
......

Extracted API

· Matched
· Matched
· Matched
· Not matched

Match results

API query

Seed issues

All matched

Not matched

② Screening - find suitable issue-triggering code (Sec 3.3)

· torch.rand
……

Extracted API

· torch.rand: size, dtype, generator
· tf.random.uniform: shape, dtype, seed

API pair usage

Usage query
 (PyTorch code)
# torch.rand is …
# In TensorFlow, we can use
# tf.random.uniform …
# Transfer the code to TensorFlow 

Generation prompt

Generate

Test cases

LLM

③ Distinction - prompt with API usage (Sec 3.4)

DL FrameworksBugs

RunTrigger

Fig. 2. Overall Workflow of CrossProbe

• Tensor values: torch.ones and tf.ones
• Tensor operations: torch.add and tf.add
• Neural networks: torch.nn.ReLU and tf.nn.ReLU
• Optimization algorithms: torch.optim.SGD and tf.keras.optimizers.SGD

After manual verification, we find that such APIs are indeed analogous and can be easily paired
with each other by dropping the package prefix (torch. and tf.) of the API names and matching
the remaining parts. However, there also exist analogous APIs with different names. For these cases,
we measure the API similarity by calculating the cosine difference of the embedding of the APIs’
functionality description. Specifically, we have trained a model with BERT to determine whether
two given APIs are analogous by analyzing their descriptions. For model training, we leverage the
descriptions of the APIs that are matched by API names.
With the trained model, we have found some APIs with analogous functionalities but different

names according to the API description. Then we store the name, parameters and code examples
of each API pair into the knowledge database, as illustrated in Figure 3. The example of such API
pairs are presented as follows:
• Tensor construction: torch.tensor and tf.constant
• Random tensors: torch.rand and tf.random.uniform
• Loss functions: torch.nn.MSELoss and tf.keras.losses.MeanSquaredError

With the alignment process, we have collected 427 analogous API pairs from PyTorch and
TensorFlow. Among them, 298 pairs are identified by matching API names, and 129 pairs are
found with the similarity model. These API pairs have covered 28.9% of PyTorch APIs and 20.2%
of TensorFlow APIs. For the API pairs, we will further extract the information on parameters and
examples in the documentation and integrate the knowledge into the prompts in the distinction
process (Section 3.4).
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Returns a tensor filled with random numbers from a uniform 
distribution on the interval [0,1)

The shape of the tensor is defined by the variable argument size.

Outputs random values from a uniform distribution.

For floats, the default range is [0, 1). For ints, at least maxval 
must be specified explicitly.

size (int...) – a sequence of integers that ...

generator (torch.Generator, optional) - ...

...

torch.rand tf.random.uniform

shape - A 1-D integer Tensor or Python array...

minval - A Tensor or Python value ...

...

>>> torch.rand(4)
tensor([ 0.5204,  0.2503,  0.3525,  0.5673])

...

>>> tf.random.uniform(shape=[], maxval=3,
                      dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=2>
...

API
Description

Parameters

Examples

Match with
Similarity Model

Store to
Database
if match

Fig. 3. An Example of Aligned API Pair

3.3 Issue Screening

The screening process is to filter out the inappropriate issue-triggering code from the issues in source
framework and improve the success rate of transfer. We consider a piece of code inappropriate to be
transferred if the APIs involved in the code do not have analogous ones in the target frameworks.
As discussed in Section 1, transfer failures can be caused by converting APIs that have huge
differences between frameworks, and the statistics in Section 2.2 shows that 58% of the failed
conversions by Basic CoT originate from unmatched API calls. The abnormally low conversion
success rate (below 15%) can introduce substantial noises that complicate subsequent bug validation
processes. In addition, the unmatched APIs usually represent functional divergences between
different frameworks. However, our work primarily focuses on mirroring issues that usually occur
under targeted inputs for analogous functionalities. These considerations motivate us to implement
rigorous filtering in CrossProbe to improve both computational efficiency and the quality of the
transferred code, ultimately enhancing bug detection accuracy.
For issue screening, CrossProbe extracts the APIs used in the triggering code of the source

issue, and query them in the database constructed in Section 3.2. The issue-triggering code with no
matching APIs will be excluded from further conversion. For example, the code that involves the
following exclusive APIs will be excluded.
• Platform specific: torch.distributed.ProcessGroup
• Special operation: keras.mixed_precision.set_global_policy
Such APIs will easily cause transfer failures due to the lack of corresponding functionality in

the target framework, or lead to the generation of wrong code. For illustration, Figure 4 shows
two examples with mismatched APIs. In the code transferred from PyTorch #129482, the API
call torch.distributed.ProcessGroup will be converted to a blank implementation by LLM,
with comments complaining the lack of directly equivalent API. TensorFlow #66374 presents
another scenario where the transferred code is not even syntactically correct. The special operator
keras.mixed_precision.set_global_policy will cause LLMs to generate code involving non-
existent APIs in PyTorch.

3.4 API Usage Distinction

With the API database constructed in the alignment step and the seed issues identified via the
screening process, we further design API usage distinction prompts to guide LLMs to accurately
transfer issue-triggering code. The distinction prompts contain the usage information of the APIs
from both source and target frameworks, and leverage the chain-of-thought technique to effectively
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# PyTorch 129482
x = torch.randn((2, 3))

g = torch.distributed.ProcessGroup(0, 0)
boxed_group = g.boxed()

...
x = tf.random.normal((2, 3))

# Not Equalavant 
y = g  

>>> LLM generation complains:
# TensorFlow does not have a direct equivalent of boxed groups in PyTorch
# Assuming y is not used in this case as a direct tensor
# You might need to adapt this based on how you plan to use the process group

Cannot match
ProcessGroup

Should be filtered

# TensorFlow 66374
inputs = keras.Input(shape=(784,))

keras.mixed_precision
     .set_global_policy("mixed_float16")

...
inputs = inputs.view(-1, 784)

torch.cuda.amp
     .set_global_policy("mixed_float16")

Non-existent APIPyTorch does not support setting up 
mixed precision with global policy

Fig. 4. Examples of Filtered Issues with Mismatched APIs

provide necessary knowledge to LLMs. Specifically, CrossProbe integrates the following two types
of API usage information in prompts, which can be retrieved from the API database (Section 3.2).
1) API parameters. The documentation explains the type, order or value for the parameters of the
API. This kind of information will help LLMs to prepare the appropriate data to be used as API
input, and avoid making parameter-related mistakes when generating API calls (e.g., wrong order).
2) Code examples. The short code snippets provide more context on the use case of the API. In
particular, the type and expected value of the API output are demonstrated, which can help LLMs
to know about the functionality of the API.

# The following code can trigger a bug in PyTorch

import torch

(code...)

# The above code involves these APIs:
# torch.rand: Returns a tensor filled _____
# Parameters: size (int...), _____
# Example: torch.rand(4) _______

# torch.nn.conv1d: Applies a 1D convolution ___
# ...

# In TensorFlow, there are similar APIs:
# tf.random.uniform: Outputs random values from ___
# Parameters: shape, minval, ____
# Example: tf.random.uniform(shape=[], maxval=3,
#                       dtype=tf.int32, seed=10)

# tf.nn.conv1d: Computes a 1-D convolution ___
# ...

① Source code

② Source usage
③ Target usage

# Please convert the code snippets from PyTorch
# to TensorFlow, considering the given usage.

<infill> ④ Generation

Fig. 5. An Example of Prompt with Distinction Context

As illustrated in Figure 5, the distinction process employs chain-of-thought prompting to provide
guidance on usage patterns for both frameworks. LLMs are prompted to systematically analyze
and compare usage patterns, thereby encouraging them to account for differences between the
APIs of different framework. Specifically, the PyTorch source code in Figure 5 contains APIs
of torch.rand and torch.nn.conv1d. The distinction provides the usage information of these
two APIs, as well as the corresponding TensorFlow APIs matched from the alignment database,
including tf.random.uniform and tf.nn.conv1d. By learning from the structured comparison
information, LLMs are better guided to produce code that aligns with the correct usage of the target
framework. For example, the prompts in Figure 5 imply that the corresponding API of torch.rand
is tf.random.uniform in TensorFlow, and the name of the first argument is “shape” rather than
“size”. Such specific knowledge helps mitigate the pitfalls during code transfer, particularly those
related to API misalignment and misuses, and enhance the validity of the generated test cases.
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4 Evaluation

In this section, we evaluate our approach by investigating the following three research questions.
• RQ1 (Effectiveness of CrossProbe): Can CrossProbe effectively transfer issue-triggering

code across frameworks? How does it compare with the state-of-the-art LLM-based code

generation approaches? This RQ aims to investigate the quality of the test cases generated by
CrossProbe and perform comparisons with Basic CoT as well as recently proposed LLM-based
deep learning library testing approaches [8, 13].

• RQ2 (Ablation Study): How do the three key steps of CrossProbe contribute to the

improvement of code transfer quality? This RQ conducts an ablation study to understand how
the alignment, screening, and distinction processes affect CrossProbe’s test case generation.

• RQ3 (Usefulness): Is the transferred code by CrossProbe useful to find bugs inside deep

learning libraries? This RQ focuses on analyzing whether the transferred code can help detect
real bugs, and reveals the practical value of leveraging mirroring issues for library testing.

4.1 Experiment Design

Experiment Platform. The experiments are conducted on a workstation with the following
hardware and software configurations.
• OS: Ubuntu 22.04.4 LTS x86_64
• CPU: AMD Ryzen Threadripper PRO 5965WX
• GPU: NVIDIA RTX A6000 × 2
• Memory: 256GB
• Model: gpt-4o-2024-08-06 (training data up to Oct 2023)

4.2 RQ1: Effectiveness of CrossProbe

Approaches for comparison. Besides the Basic CoT approach introduced in our motivational
study, we also include two state-of-the-art LLM-based deep learning library testing approaches,
FuzzGPT [8] and YanHui [13], for a more comprehensive comparison. It is worth mentioning that
FuzzGPT and YanHui are originally designed for different purposes: FuzzGPT for edge-case fuzzing
and YanHui for detecting model optimization bugs. In our evaluation, we adapt them to compare
with CrossProbe from the following two perspectives.
• Quality of code transfer . FuzzGPT and YanHui are example-based approaches, which require
raw issue examples and instructive prompts. Comparatively, CrossProbe is a knowledge-based
approach, leveraging API usages and seed issues in the source framework. We first compare the
correctness of the code generated by all approaches to investigate which approach can achieve
higher quality of code transfer.

• Performance in bug detection. FuzzGPT and YanHui are essentially fuzzing approaches that
focus on covering unexplored input combinations, which may not necessarily trigger bugs
(i.e., besides bug detection, test coverage is also an important concern for the two approaches).
In contrast, CrossProbe is a more directed bug detection approach that targets at validating
whether bugs observed in a source framework also affect the target framework rather than
performing comprehensive explorations (i.e., coverage is not a primary concern in our work).
Therefore, we do not compare test coverage of different approaches but directly compare the
detected bugs and check their overlaps.

For fair comparisons, we control the amount of input tokens (for cost concerns) and data source
for different approaches. For FuzzGPT, we randomly select four samples (two from PyTorch and
two from TensorFlow) to construct a prompt. For YanHui, we extract the error description, and
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choose 2-4 similar samples from the same framework for a round of generation. The average tokens
and the corresponding cost on GPT-4o are listed in Table 3.

Table 3. Average Tokens and Cost for Different Approaches

Approach Knowledge Code Total Input Output Cost (USD)

Basic CoT 35 4,760 4,795 4,733 $6.88
FuzzGPT 104 4,760 4,864 3,925 $5.96
YanHui 1,125 4,622 5,747 4,381 $6.75
CrossProbe 2,848 2,298 5,146 3,044 $5.02

Knowledge: CoT steps, few-shot examples of issue-triggering code, documentation. Code: pure code snippets from issues.

Evaluation metrics. We adopt three metrics to evaluate the performance of all compared ap-
proaches. The first two metrics, introduced in Section 2.2, assess the quality of code transfer:
1) syntactically valid outputs and 2) functionality-preserving outputs. The third metric, real bugs,
evaluates the ability to detect bugs. During testing, we collect test cases that result in runtime
errors or assertion failures and manually inspect these errors to identify genuine bugs.

Table 4. GenerationQuality with Different Approaches

Approach Outputs Syntactically Valid Functionality Preserving Real Bugs

Basic CoT 116 18 (15.5%) 11 (9.5%) 0
FuzzGPT 116 55 (47.4%) 24 (20.6%) 5
YanHui 116 49 (42.2%) 16 (13.8%) 2
CrossProbe 116 65 (56.0%) 49 (42.2%) 19

Results. To ensure fair comparisons, we conduct the same iterations of generation (116) for all of the
approaches. Table 4 presents the quality of the test cases generated with different approaches. Com-
pared with other approaches, CrossProbe has significant improvements in generating functionality-
preserving outputs, and can detect more real bugs.
Illustrative example #1. We present an example bug exclusively detected by CrossProbe to
demonstrate its capability of transferring knowledge via leveraging mirroring issues.
1 conv = nn.Conv1d(1, 65537, 3, padding =1)
2 x = torch.ones([1, 1, 3])
3 y_mps = conv.to("mps")(x.to("mps"))

Listing 2. Special Configuration in PyTorch #129207

In Listing 2, the code can trigger an expected output when the argument of Tensor.to is set
to "mps". This API is a configuration method, which influences the program behaviors later. We
find that LLM-based fuzzing approaches such as FuzzGPT and YanHui are unlikely to modify the
tensors by adding the call of “to()” API. Their mutation points usually lie in nn.Conv1d, because it
is the core API in the code snippet. As a result, the generated code may contain multiple variants of
the arguments in the core API, leaving the statement of tensor (Line 3) unmodified. Therefore, they
may not be effective to cover the side effects of previous configurations and generate corresponding
test cases. For CrossProbe, since the related issue has been reported in PyTorch, it can directly
learn the case of “convolution on Apple GPU” and transfer the testing point to TensorFlow. The
transferred test case is valid in TensorFlow, and triggers an analogous issue, which has been
reported to developers (TensorFlow #71577).
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1 keras.mixed_precision.set_global_policy (" mixed_float16 ")
2 model.compile(
3 loss=" sparse_categorical_crossentropy",
4 optimizer=keras.optimizers.RMSprop ())

Listing 3. Special Input Arguments in TensorFlow #66374

Illustrative example #2. In Listing 3, the code can trigger a runtime error with mixed floating-
point data and autograph compilation. The argument in the set_global_policy and compile
method include a string. For such an argument, the documentation may not list all the possible
cases. Instead, the strings are described as the name of data types or functions. It requires additional
knowledge to find out correct choices for testing. Currently, FuzzGPT and YanHui lack the capability
to effectively leverage the full documentation of APIs and modules across different frameworks,
such as constructing a full list of “names of mixed precision” or “names of loss function”. Therefore,
they may miss some input cases during fuzzing. For CrossProbe, these cases can be retrieved from
existing issues in PyTorch (#46807). Given the testing point of “mixed float16” and “cross entropy”,
the generated code can directly explore the specific input combination and target at testing the
analogous scenario in TensorFlow (#66374).
Analysis of results. As discussed in Section 2.2, the ratio of syntactically valid outputs evaluates
the ability of an approach to correctly use APIs in code generation. In our results, the Basic CoT
approach is left behind because it does not effectively leverage any API knowledge. The prompts
of YanHui provide some information on the data and type of the API during the concentration
process, but the use of knowledge is restricted to a single framework. FuzzGPT can achieve higher
performance because the prompts provide examples from both the source and target frameworks,
which can serve as useful references when transferring code. Compared to the above approaches,
the prompts of CrossProbe provide further information and knowledge about the source and
target frameworks, clearly pointing out the API pairs and usages. Therefore, CrossProbe behaves
the best in generating valid code.
On the other hand, the ratio of functionality-preserving outputs measures the ability of an ap-

proach to choose appropriate APIs in code generation. In our results, CrossProbe shows significant
improvements compared with other approaches. Such a great performance can be attributed to
two reasons. First, CrossProbe has better input seeds. The screening process filters out the code
that is not suitable for transfer. As a result, CrossProbe would not attempt to convert the code
involving APIs without analogous ones in the target framework. Second, CrossProbe has more
extensive knowledge of APIs. The distinction process provides information on which APIs are
functionality-equivalent and how to use them. Therefore, CrossProbe can perform a more accurate
code transfer from the source framework to the target framework.

Answer to RQ1. Compared with other LLM-based approaches, CrossProbe can transfer
test cases with a significantly higher success rate. The high ratios of syntactically valid and
functionality-preserving outputs can substantially reduce the effort in manual validation of
the generated test cases for finding real bugs. The test cases generated via knowledge transfer
can also effectively explore testing points that are hard to cover with fuzzing approaches.

4.3 RQ2: Ablation Study

To figure out how the three step of CrossProbe contribute to the code transfer, we conduct ablation
studies by removing the key information for each step.
Influence of alignment. Table 5 presents the quality of generated code and detected bugs with
or without the BERT-based API matching model. The differences in the output code and the
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detected bugs show that, having a higher amount of matched APIs can improve the performance of
code transfer and bug detection. Without the API matching model, fewer API pairs are identified,
which negatively impacts the subsequent screening and distinction processes. For example, when
analyzing the results, we find that a number of suitable seed issues are discarded because the API
pairs are missing from the database. Due to this reason, there are fewer test cases generated, and
fewer APIs are tested. As a result, the number of detected bugs also decreases.

Table 5. The Performance of CrossProbe with or without Matching Model

Setting Matched APIs Inputs Outputs Functionality-Preserving Bugs

With Matching Model 427 182 116 49 (26.9% of inputs) 19
Without Matching Model 298 182 72 26 (14.3% of inputs) 6

Influence of screening. Table 6 presents the quality of generated code and detected bugs with or
without the process of screening. The comparison shows that the input without screening mainly
affects the ratio of syntactically valid code generated by LLMs. Without screening, the input source
code may contain APIs that do not have the functionality-equivalent counterparts in the target
framework. As discussed in Section 2.2, the gap for functionalities causes a significant drop in
the success rate of generating syntactically valid code. Regarding the filtered input cases obtained
during the screening process, 10.7% are false positives, which in fact could help produce a valid
output. However, these outputs are not functionality-preserving after further inspection. Overall,
the screening process is effective in identifying useful inputs.

Table 6. The Performance of CrossProbe with or without Screening

Setting Inputs Outputs Syntactically Valid Valid in Filtered

With Screening 182 116 65 (56.0%) N/A
Without Screening 182 182 72 (39.6%) 7 (10.7%)

Table 7. CrossProbe with or without Distinction

Setting Outputs Functionality-Preserving Wrong Args Empty Untargeted

With Distinction 116 49 (42.2%) 22 9 36
Without Distinction 116 28 (24.1%) 39 14 35

Influence of Distinction. Table 7 presents the experimental results with and without distinction
prompts. Without the distinction process, the ratio of functionality-preserving outputs will drop
significantly for the following reasons. First, the LLM lacks sufficient knowledge about the usage
difference between APIs, and the generated code may not fully conform to the correct API usage of
the target framework. This results in an increase in the number of “Wrong Args” errors. Second,
the usage information of the target API is not comprehensive, and in such cases LLMs can only
infer the API usage based on their own training data. As a result, low-quality code such as empty
or incomplete statements could be generated.

Answer to RQ2. The alignment, screening, and distinction processes in CrossProbe all
contribute to the improvement in the quality of code transfer and the number of detected
bugs. The API matching model mainly confines the search space of code generation. The
screening and distinction processes mainly help improve the correctness of the generated
output. CrossProbe reaches its best performance with all the processes enabled.
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4.4 RQ3: Usefulness

Bugs detected by CrossProbe. To evaluate the usefulness of CrossProbe, we review its gener-
ated code and categorize the code that can trigger the following errors.
• Assertion errors that arise when the assertions in the test cases are violated. CrossProbe has
detected 13 such issues and the reasons include:
– 8 operations onCPU andGPU produce different results, such as Conv1D onMPS (TensorFlow
#71577).

– 3 model conversions violate the expected changes, such as ONNX model export (PyTorch
#136860).

– 2 operators produce wrong results for specific inputs, such as softmax (PyTorch #123911).
• Crash errors that cause abrupt program termination when executing the generated test cases.
CrossProbe has detected 6 such issues and the reasons include:
– 4 environment issues when the code fails to run on specific platforms. For example, C++
library link errors, such as Metal backend (TensorFlow #62383).

– 2 unsupported data types or operations that the framework fails to handle, such as adding
int to tuple (PyTorch #136837).

conv = nn.Conv1d(1, 65537, 3, padding=1)
x = torch.ones([1, 1, 3])

y_cpu = conv.to("cpu")(x.to("cpu"))
y_mps = conv.to("mps")(x.to("mps"))

# y_cpu: [[[ 0.3732657 0.36894318
#                      0.8441285   ...]]]

# y_mps: [[[ 0.9421642 0.36894318
#                      0.8441285   ...]]]

conv = tf.keras.layers.Conv1D(
 filters=65537,kernel_size=3,padding='same')
x = tf.ones([1, 3, 1])

with tf.device('/CPU:0'):
    y_cpu = conv(x)
with tf.device('/GPU:0'):
    y_gpu = conv(x)

# y_cpu: [[[-0.00080839  0.0018223 ...
#                           0.00536495]]]

# y_gpu: [[[ 0.40204332  0.0018223 ...
#                           0.00536495]]]

In PyTorch, the format is Batch, Channel, Length In TensorFlow, the format is Batch, Length, Channel

PyTorch uses Functional style API TensorFlow uses Block style API

Trigger common bugs

Fig. 6. An Example of Different Results on CPU and GPU

To demonstrate the usefulness of CrossProbe in transferring code and finding bugs, we present
two real bugs found by CrossProbe below.
Example bug #1. Figure 6 shows an example of different results produced by CPU and the Metal
backend of GPU. The code is transferred from PyTorch (#129207). In this test case, a layer of Conv1D
is applied to a tensor. The code implementation for PyTorch and TensorFlow is mainly different in
the following aspects.
• Tensor shape. In PyTorch, the shape list represents the batch size (𝑁 ), the number of chan-
nels (𝐶), and the length of signal sequence (𝐿), respectively. However, in TensorFlow, the shape
is recognized by the batch shape, the steps, and channels, where the last two parameters are
swapped.

• Operation API style. In PyTorch, GPU operations are triggered by calling functional APIs,
and the usage is to convert the tensor to the target device. In contrast, TensorFlow uses block
to determine the computing device. GPU operations should be wrapped into the with scope.

The above differences make it challenging for LLMs to transfer the code. For example, the code
generated by YanHui fails to use the with block for the device, and the computation is not tested
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on the GPU. The code generated by the Basic CoT approach produces the wrong shape and fails
to swap the channel and length parameters. In CrossProbe, the prompts include the API usage
information, as illustrated in Listing 4. The explanation of each parameter is listed in detail, which
effectively enables CrossProbe to follow the API usage to generate correct code.
1 # tf.nn.Conv1d
2 # Input: (N, C, L) or (C, L), where N is a batch size ,
3 # C denotes a number of channels , L is a length of signal sequence.
4 ...
5 # tf.keras.layers.Conv1D
6 # data_format: If you never set it, then it will be "channels_last ".
7 # Input shape: If data_format =" channels_last ":
8 # A 3D tensor with shape: (batch_shape , steps , channels)

Listing 4. Usage Provided by the Distinction Process

With the successfully transferred code, the analogous problem of the unexpected output is also
triggered in TensorFlow. This common issue is revealed because both PyTorch and TensorFlow are
relying on the same dependency, GPU backend. In TensorFlow, the computation errors on Metal
have not been noticed yet, and the problem cannot be easily detected by fuzzing the TensorFlow
framework. CrossProbe takes advantage of the knowledge from PyTorch. Since PyTorch users
first reported this problem, we can transfer the code and confirm an untested issue in TensorFlow.
This bug is confirmed and discussed in TensorFlow #71577, and has been fixed in the latest version
of macOS Sequoia 15.1.

class MaskedConv2dA(torch.nn.Conv2d):
    def __init__(self, *, kernel_size, ...):
        mask = torch.zeros_like(self.weight)

        center = kernel_size // 2

        mask[:, :, :center, :] = 1
        ...

class PixelCNN(torch.nn.Module):
    ...

in_data = torch.rand(10, 32, 32, 1)
pixel_cnn(in_data)

>>> AssertionError: expected size 64==64, 
stride 1==49 at dim=1

class PixelCNN(tf.keras.Model):
    ...

in_data = tf.random.uniform((10, 32, 32, 1)
pixel_cnn(in_data)

>>> INVALID_ARGUMENT: Input to reshape is a 
tensor with 640 values, but the requested 
shape has 20480

In PyTorch, kernel_size is int

Trigger common bugs

class MaskedConv2DA(tf.keras.layers.Conv2D):
    def build(self, input_shape):
        ...
        if isinstance(self.kernel_size, int):
            center = self.kernel_size // 2
        else:
            center = self.kernel_size[0] // 2
        ...

In TensorFlow, kernel_size is automatically converted to tuple

Fig. 7. An Example of Unexpected Shape Error

Example bug #2. Figure 7 shows another example of mismatched shape size of deep learning
models. The issue is originally reported in PyTorch (#136837), which is triggered by writing custom
layers based on Conv2D. Similarly, without proper guidance, LLMs may make mistakes on the code
transfer. In TensorFlow, the layer can be created with a kernel size of integer type by assuming the
shape as a square. However, after the layer is constructed, the self.kernel_size is automatically
converted to a tuple type. In our experiments, we observe that both FuzzGPT and YanHui fail in
adapting the access of tuple type. In contrast, CrossProbe is aware of the usage of kernel_size
by referring to the documentation, which mentions that the parameter can be “int or tuple/list of 2
integer”. Therefore, the correct code can be generated, and the internal bugs will be tested.
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The code transferred to TensorFlow can also trigger errors about the tensor shape, which
involves complex operations on layers and data. This case aligns with our finding of common
mistakes mentioned in Section 1. In this example, the deep learning model is highly customized
in PyTorch. It is challenging for LLM-based fuzzing approaches to cover such a case with only
the knowledge from TensorFlow. CrossProbe leverages the knowledge from PyTorch and can
successfully detect this error by constructing analogous customized model in TensorFlow.

Answer to RQ3. CrossProbe is useful for finding bugs in real-world frameworks by transfer-
ring issues from other frameworks. The errors exposed by the transferred code can be difficult
to trigger when only leveraging single-framework data (e.g., historical issues) during testing.
CrossProbe demonstrates promising results in generating test cases for undiscovered prob-
lems and has successfully detected 19 assertion failures or crashes in PyTorch and TensorFlow.

5 Discussion

5.1 Feedback From the Community

Through our responsible disclosure process, all bugs identified by CrossProbe have been submitted
to the respective GitHub repository of PyTorch and TensorFlow. These bug reports have yielded
concrete feedback from the community:
Timely fixes and integration of tests. TensorFlow #71577 is resolved by Apple in macOS
Sequoia 15.1. PyTorch #145735 and #145203 are successfully patched in PR #146085 with test cases
integrated into PyTorch’s official unit testing suite.
Upstream dependency resolution. In five cases where the root cause resided in platform imple-
mentations, two CUDA-related issues (TensorFlow #87432, #83379) are acknowledged by NVIDIA
and awaiting further fix. For three Apple MPS backend issues, TensorFlow #71577 is resolved as
mentioned above, and TensorFlow #62859, PyTorch #144824 are being diagnosed by Apple.
Under further discussion. Certain issues have revealed differences in the API behavior between
PyTorch and TensorFlow. For example, the input of TensorFlow #71638 may cause a negative output
in TensorFlow, but a crash in PyTorch. These cases have initiated technical discussions among the
developers of the frameworks, which are still ongoing at the time when we submit the paper.
In summary, among the 19 issues reported by us, 21% are fully resolved and 56% are in active

remediation phases.

5.2 Comparison with Fuzzing

The experimental results in Section 4 demonstrate that targeted testing via knowledge transfer
(CrossProbe) and existing fuzzing approaches (FuzzGPT and YanHui) exhibit distinct strengths
in detecting bugs in deep learning systems. This section further analyzes the fundamental differ-
ences between two different types of approaches and proposes to synergize them to achieve a
comprehensive testing of deep learning frameworks.
Characteristics of fuzzing approaches. Fuzzing approaches, through mutated input generation,
excel at discovering crashes and output inconsistencies inside deep learning frameworks[8, 13].
Their strength lies in exploring unexpected input combinations that developers might overlook.
However, as illustrated in Section 4.2, their strategies may fail to trigger side effect issues of
configurations and miss some input cases during mutation.
Advantages of knowledge transfer. Our knowledge-based approach addresses some of the miss-
ing cases precisely by leveraging known problematic patterns from historical issues of analogous
frameworks. By systematically transferring and adapting test cases (Section 3), we achieve targeted
validation of framework behaviors.
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Rather than viewing the two types of approaches as competing alternatives, we can consider
them as complementary components in a comprehensive testing strategy. Fuzzing serves as a broad-
spectrum detector for generic inconsistencies and is particularly effective to explore unknown failure
patterns. On the other hand, knowledge transfer acts as a precise and targeted tool for auditing
framework-specific behaviors and is especially valuable for mature systems with accumulated
historical bug patterns.

5.3 Threats to Validity and Limitations

The validity of our study is subject to certain threats, primarily related to the stability of the LLM
outputs and the constraints of our testing environment for the generated code. One key threat
to validity is the inherent unpredictability of outputs from GPT-4o, a black-box online service
that does not allow for precise control over generated content, resulting in potential variations in
responses across identical prompts. This lack of control can introduce inconsistencies that affect
the reliability of our results.

Currently, CrossProbe supports PyTorch and TensorFlow. With the growing popularity of LLMs,
emerging frameworks such as Apple’s MLX and LLM-specific solutions like vLLM have introduced
new runtime environments. To address this, we plan to extend CrossProbe ’s compatibility to these
frameworks in future work. The adaptation effort is lightweight, primarily involving API labeling
and description mapping to ensure consistent behavior across frameworks, without requiring
large-scale model re-training or architectural changes.

Additionally, our testing environment is limited to GPUs fromApple and NVIDIA. This restriction
imposes compatibility constraints, as some code snippets may be designed to leverage platform-
specific libraries such as AMD’s ROCm or Intel’s MKL-DNN, which are unsupported in our setup.
As a result, any code dependent on these alternative libraries is likely to encounter execution
failures within our testing environment. To mitigate these limitations, we identify and exclude
incompatible code during the screening phase, as described in Section 3.3. This step ensures that
our study remains focused on code suitable for transfer within the capabilities of our testing
environment, thereby improving the robustness of our evaluation process.

6 Related Work

Bugs in deep learning libraries. Researchers have conducted extensive investigations into
bugs and testing within deep learning libraries. To characterize these bugs, a substantial body
of literature [3–5, 14, 17, 34] has examined the symptoms and root causes of various types of
bugs in deep learning frameworks, including common programming errors, performance issues,
deployment challenges, compiler bugs, and the newly emerging class of optimization bugs.
Traditional approaches to testing deep learning libraries. To test libraries using input data,
Dwarakanath et al. [11] employed metamorphic testing [33], where training and testing data
are mutated. Potential bugs in the library implementations are identified when violations of
metamorphic relations are observed during testing.

For testing deep learning models, CRADLE [28] introduced an effective test oracle for deep learn-
ing libraries, utilizing differential testing [23]. Framework bugs are exposed when inconsistencies
are found in model outputs. Building on this, Audee [15] focused on fuzz testing Deep Neural
Network (DNN) models. Audee uses popular DNN models as seeds and mutates inputs and weights
to generate new models for testing. In addition, DeepMutation++[16] adopts a different strategy by
categorizing DNNs into Feed-Forward Neural Networks (FNNs) and Recurrent Neural Networks
(RNNs), applying specific mutation strategies for each type based on their structural differences.
LEMON[41] presents an approach for generating models by employing heuristic rules to guide
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mutations, thereby increasing the likelihood of exposing bugs. NNSmith [21] leverages SMT solvers
to generate DNN models that adhere to the constraints of the computation graph.
Beyond input and model testing, API testing is also a crucial aspect. FreeFuzz [42] collects

API calls from open-source projects, identifies parameters in function calls, and mutates these
parameters to generate new test cases for deep learning libraries. DocTer [46] aims to fuzz API
functions by extracting documentation from deep learning libraries. The extracted documentation
is normalized, parsed into dependency trees, and used to generate test functions that satisfy the
constraints of the APIs.
LLM-empowered approaches to testing deep learning libraries. With the advent of LLMs,
researchers have begun leveraging these models for software testing. TitanFuzz [7] was the first to
introduce LLMs to fuzzing deep learning libraries. It generates seed inputs using prompts describing
the API and mutates these inputs by masking portions of the code, asking LLMs to fill in the missing
parts. FuzzGPT [8] employs few-shot prompting, combining examples of code and descriptions to
generate code for library testing.

Besides fuzzing the whole framework for detecting general bugs, the fine-grained scope of LLM-
based testing has also been studied recently. YanHui [13] focuses on detecting model optimization
bugs using a prompt design paradigm called “concentration and diffusion”, which incorporates
detailed domain knowledge of model optimization.

7 Conclusion

In conclusion, this paper introduces an innovative approach to enhance test generation for deep
learning (DL) frameworks by leveraging analogous bugs across frameworks, termed as “mirroring
issues”. Our tool, CrossProbe, utilizes large language models to effectively learn from existing
issues in one framework and generate targeted test cases for another framework, thus achieving
cross-framework bug detection. Through the introduction of three key processes - alignment,
screening, and distinction - we address the challenges of incompatible functionalities and divergent
implementations between frameworks, which often complicate test case generation. The experimen-
tal results on PyTorch and TensorFlow, two most popular DL frameworks, show that CrossProbe
significantly improves the efficiency of code generation and achieves a much higher success rate
in transferring issues compared to two state-of-the-art LLM-based testing methods. Our findings
demonstrate the potential of CrossProbe in cross-framework bug detection, paving the way for
more robust DL frameworks and contributing to a more reliable and trustworthy ecosystem of DL
applications.

8 Data Availability

We open-source CrossProbe and the associated knowledge database of API on [6], to facilitate
further research of the code transfer between deep learning frameworks.
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