
A Comprehensive Study of Real-World Bugs
in Machine Learning Model Optimization

Hao Guan1,2, Ying Xiao2, Jiaying Li3, Yepang Liu2, Guangdong Bai1
1 The University of Queensland, Brisbane, Australia

2 Southern University of Science and Technology, Shenzhen, China
3 Microsoft Software Technology Center Asia, Beijing, China

{hao.guan, g.bai}@uq.edu.au, 12150075@mail.sustech.edu.cn, jiayingli@microsoft.com, liuyp1@sustech.edu.cn

Abstract—Due to the great advance in machine learning (ML)
techniques, numerous ML models are expanding their application
domains in recent years. To adapt for resource-constrained
platforms such as mobile and Internet of Things (IoT) devices,
pre-trained models are often processed to enhance their efficiency
and compactness, using optimization techniques such as pruning
and quantization. Similar to the optimization process in other
complex systems, e.g., program compilers and databases, opti-
mizations for ML models can contain bugs, leading to severe
consequences such as system crashes and financial loss. While
bugs in training, compiling and deployment stages have been ex-
tensively studied, there is still a lack of systematic understanding
and characterization of model optimization bugs (MOBs).

In this work, we conduct the first empirical study to identify
and characterize MOBs. We collect a comprehensive dataset
containing 371 MOBs from TensorFlow and PyTorch, the most
extensively used open-source ML frameworks, covering the entire
development time span of their optimizers (May 2019 to August
2022). We then investigate the collected bugs from various
perspectives, including their symptoms, root causes, life cycles,
detection and fixes. Our work unveils the status quo of MOBs
in the wild, and reveals their features on which future detection
techniques can be based. Our findings also serve as a warning to
the developers and the users of ML frameworks, and an appeal
to our research community to enact dedicated countermeasures.

Index Terms—Machine Learning, Model Optimization, Bugs

I. INTRODUCTION

In the last decade, machine learning (ML) techniques have

received much attention due to their exceptional performance

in solving complex problems. They have been applied to a

wide spectrum of domains, ranging from optical character

and speech recognition [1], [2] to medical diagnosis [3], [4]

and autonomous driving systems [5], which are deployed for

safety-critical tasks. With their popularization, the scenarios

of ML applications are also expanding. They no longer ex-

clusively run on servers with high computational power, but

also on various end devices where computation, storage and

energy are relatively limited, such as IoT, edge and mobile

devices [6], [7].

Deploying ML models on resource-constrained scenarios

may encounter challenges though. Contemporary ML models

Yepang Liu is affiliated with the Department of Computer Science and
Engineering and the Research Institute of Trustworthy Autonomous Systems.
Hao Guan is under the UQ-SUSTech Joint Program. The corresponding
authors are Yepang Liu and Guangdong Bai.

are typically trained with complex structures and a large num-

ber of numerical parameters to achieve favorable accuracy and

generalization performance. For example, many models for

complex tasks such as image processing and natural language

processing may contain millions of trainable parameters and

hundreds of network layers [8]. Such massive models can be

trained on high-performance servers, but often are not readily

deployable in production scenarios. They may not perform

well or even fail to work on certain deployed devices, as

revealed by recent studies [9], [10]. Moreover, when deploying

ML models, model consumers need to consider various factors

such as service latency and model updates, which are rarely

considered during the training phase. Therefore, ML models

usually need to be optimized in terms of compactness and

resource consumption, prior to their deployment.

Model optimization mainly tackles the challenges of the

complex structure of ML models and vast amounts of numer-

ical parameters. Various optimization techniques have been

proposed so far, and they can be grouped into two main

categories, i.e., pruning [11]–[14] and quantization [15]–[17].

Pruning-based approaches identify and zero out insignificant

parameters to reduce the model size, and quantization-based

approaches replace parameters of floating-point numbers with

lower precision representations to simplify computation. These

techniques have been incorporated by the popular ML frame-

works, such as TensorFlow [18] and PyTorch [19], and have

become the de facto pre-deployment model processors.

Similar to the optimization task in other software that

handles complex objects, such as in program compilers [20]–

[22] and databases [23], ML model optimization is an error-

prone process. It may mistakenly result in a defective model

that produces different outputs than the original model, con-

sumes excessive prediction time, or even crashes [9], [24]. To

generalize, we call these bugs that appear in the optimization

phase of ML frameworks model optimization bugs (MOBs).

Research efforts have been made to study the reliability of

ML frameworks. They mostly focus on the general program

bugs in the learning stage [25]–[29], the compiling stage [30]

and the deployment stage [9], [31], [32]. Nonetheless, MOBs

remain largely unstudied. Researchers have simply treated

the optimization as part of the model training or compiling

process, despite the great paradigm shifts. For example, the

compiling process aims to adapt a model for a particular

147

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00024

platform [30]. It keeps the model’s numerical and structural

details to preserve model fidelity. In contrast, the optimization

process has to manipulate the details of the model.

In this work, we conduct a comprehensive study to under-

stand MOBs. We aim to provide the developers and users

of ML frameworks with our findings and insights regarding

MOBs, to help them precisely and efficiently pinpoint, if

not completely avoid, such an otherwise overlooked category

of bugs. For our study, we have collected 371 real-world

MOBs from TensorFlow and PyTorch, the most popular ML

frameworks, covering every release of their optimizers from

May 2019 to August 2022. We review their bug reports,

source code, patches, and developer discussions, taking into

consideration multi-dimensional characteristics including their

prevalence, symptoms, distributions, and life cycle. We also

investigate the root causes of the collected MOBs, and sum-

marize the challenges to detect and fix them.

Key Findings. To the best of our knowledge, this is the

first study on characterizing MOBs. Our study unveils the

landscape of MOBs in popular ML frameworks. Below we

summarize our key findings, and we defer more details to

Section IV.

• Most MOBs are introduced with the new releases and

major revisions of model optimizers in ML frameworks.

They often have stayed in the codebases for a long time

before they are discovered and reported.

• MOBs often result in subtle and model optimization-

specific consequences such as output corruption and ac-

curacy degradation.

• MOBs have distinctive root causes from bugs in other

components of ML frameworks, such as mis-shaping,

missing support of types/operations and metadata errors,

due to the special operations in model optimization.

• Existing approaches are not effective in detecting MOBs

due to the complexity caused by hybrid programming

languages, diversified platforms, input data constraints, and

volatile inference results.

Contributions. This work makes three major contributions.

• We collect a MOB dataset from TensorFlow and PyTorch

and conduct the first systematic study on this previously

unstudied type of bugs in ML frameworks.

• We reveal the bug patterns of MOBs, and provide insights

into their bug-introducing stages, triggering, and oracles

to facilitate their detection and localization. Our study can

help researchers gain an in-depth understanding of MOBs,

and encourage them to enact dedicated countermeasures.

• To facilitate future research on MOBs, including their de-

tection and fixing, we make our dataset publicly available

at https://github.com/MOB2022/MOB-dataset.

II. ML MODEL OPTIMIZATION

This section introduces model optimization techniques (Sec-

tion II-A). We also present the general workflow of model opti-

mization, position it in the entire ML life cycle and distinguish

it from other procedures like model compiling (Section II-B).

Original
Model

Loaded
Model

Processed
Model

Fine-tuned
Model

Optimized
Model

Load Prune / Quantize Retrain (optional) Format

Fig. 1. The general workflow of model optimization

A. ML Model Optimization and Optimization Techniques

Model optimization. The ML models trained to solve real-

world complex tasks, especially the deep neural networks,

mostly consist of complex structures, and contain a great

number of numerical parameters. Using such models may

require extensive storage and computational resources, which

can easily go beyond the capacity of small devices. Opti-

mization procedures thus are often necessary for adapting the

pre-trained models to resource-constrained platforms. Besides

being shown beneficial in deploying ML models on resource-

restrained devices, model optimization has also demonstrated

its advantage in various scenarios, such as reducing latency and

cost for inference [11], [33], over-the-air model updates [33],

and hardware-specific optimization [34], [35].

Optimization Techniques. Various techniques [11], [15], [33]

have been proposed for model optimization. They could be

grouped in two genres, i.e., pruning-based optimization that

alters the network structure, and quantization-based optimiza-
tion that modifies the numerical parameters.

• Pruning generates sparse models where connections be-

tween operators (i.e., neural network layers) are pruned

by introducing zeros to the parameter tensors.

• Quantization represents the models with lower precision,

such as 8-bit integers as opposed to 32-bit floats, to

simplify computation when using the models.

Over the past few years, these optimization techniques have

become mature and effective. They have been realized in the

state-of-the-art ML frameworks, and become a de facto post-

training processing step. For instance, the official guide [33]

of TensorFlow introduces how to optimize ML models in the

TensorFlow format, and so do PyTorch documents [36], [37].

B. A General Workflow of Model Optimization

Current model optimization processes usually consist of

four stages and a typical workflow can be found in Figure 1.

• S1: Loading and format conversion. The optimizer loads

the original model and converts it into an intermediate

representation (IR) in a particular format fitting the opti-

mization algorithm. The layers may be annotated with the

requirements and configurations for quantization, which

can override the default behavior of the original layer.

• S2: Pruning/Quantization. This is the main step in model

optimization. The pruning or quantization operations are

applied to the IR to generate an optimized model.

• S3: Retraining or fine-tuning (optional). The optimized

model is fine-tuned or retrained with the original dataset.

148

This stage is optional, and it aims to ensure the merits of

the original model on accuracy are not optimized out.

• S4: Output formatting. This stage reformats the optimized

model from the IR to a model portable for subsequent

deployment. All annotations and pre-processing operations

should be recovered. Ideally, the optimization should be

transparent to the model consumption.

III. METHODOLOGY

In this section, we first present our data collection pro-

cess (Section III-A), and then discuss the methodology for

filtering and labeling MOBs (Sections III-B and III-C).

A. Data Collection

We first consider ML platforms from which we construct

our MOB dataset. Due to the great popularity of ML tech-

niques in recent years, dozens of frameworks have been de-

veloped and publicly released. Selecting representative frame-

works is crucial to justify our results and make them generalize

to other ML frameworks.

We start with the top-10 ML frameworks among data

scientists, according to their power scores [38] synthesized

from prevalence-indicating metrics such as usage survey,

community activity, and articles/books reference. This list

includes TensorFlow (with a power score of 97), Keras (52),

PyTorch (23), Caffe (17), Theano (12), MXNet (8), CNTK (5),

DeepLearning4j (4), Caffe2 (3), and Chainer (1). Among them,

we rule out those that are closed-source, inactively maintained,

inadequately documented or having a small number of issues,

as of July 31, 2022. This excludes the following ones.

• Caffe/Caffe2. It is excluded as its most recent commit was

in early 2020, and its latest stable version was released 5

years ago.

• Chainer. It has not been updated since the end of 2019,

and no optimization module is found in it.

• Theano. It is not under active maintenance. The most

recent commit was in Nov 2021. Its continued project,

aesara, is immature without pruning or quantization API.

• MXNet, CNTK and Deeplearning4j. As of July 2022, their

latest version is v1.7, v2.7 and v1.0.0-M2, respectively.

They only provide simple quantization [39]–[41], and none

of them provides any model pruning API.

This process leaves three winners, i.e. TensorFlow, Keras

and PyTorch, and we take them as the representatives of

modern ML frameworks. Regarding the actual projects (i.e.,

repositories), since Keras is built on top of TensorFlow2

and the latest optimization guide of TensorFlow recommends

using Keras APIs [42], we treat TensorFlow/Keras as one ML

platform in this study. Moreover, the optimization module of

TensorFlow resides in a separate repository tfmot and thus

it is also included in our study. Finally, we take PyTorch,

TensorFlow and tfmot as target projects. In Table I, we can see

all the projects are large-scale, with millions of lines of code,

more than 200,000 commits and more than 30,000 issues in

total.

TABLE I
THE STATISTICS OF PROJECTS COLLECTED FOR STUDYING MOBS

Project Name Stars Commits Lines of Code Files
Num

Issues
Num

PyTorch 54,700+ 44,566 1,846,722 8,971 24,9601

TensorFlow 164,000+ 126,552 3,300,942 16,263 6,162

tfmot2 1,213 726 30,985 291 103
1 We counted all issues because no bug label is provided.
2 Tfmot stands for tensorflow/model-optimization, the standalone project for

optimizations of TensorFlow/Keras models.

B. Issue Selection

For the selected projects, we leverage their issue tracking

systems to collect MOBs. Apparently, not all issues there are

related to ML model optimization, and some of them are

even not bug reports. Therefore, we take a two-step collection

procedure.

Step 1: Selection of MOB related issues. To collect the issues

on model optimization, we make use of keywords and labels

of each issue. We design several patterns with our desired

characteristics and feed them into the GitHub filtering APIs

to identify possible MOBs from the massive issues. These

patterns are listed in Table II, and they are based on the

following two types of rules (both need to be satisfied).

• Containing optimization techniques. For TensorFlow, we

use the label ModelOptimizationToolkit in the main repos-

itory. For PyTorch, we use the labels module: pruning and

oncall: quantization to filter the issues on pruning and

quantization, respectively. For tfmot, we select all issues,

since the whole repository is about model optimization.

• Containing bug-related labels. In TensorFlow, the issue

proposers are required to label a bug-related issue with the

bug label. In PyTorch, the maintainers label valid issues

with triaged and assign them to relevant developers.

Step 2: Filtering invalid issues. Inevitably, some invalid

issues will be accidentally collected in the first step. To filter

out such issues that are not qualified for our study, we look

into the issue content and apply five exclusion rules (listed in

Table III) based on the following principles.

• Closed without informative comments. These issues do

not contain sufficient information for our bug analysis.

• Not a bug. We exclude those standalone feature requests

that are not based on any submitted bugs, project man-

agement topics including unit tests or CI/CD, and general

questions or enquiries.

With this process, we have collected 371 MOBs, of which

141 are from TensorFlow and 230 are from PyTorch. These

bugs are dated from May 2019 to August 2022 and distributed

across every release of the optimization modules of each

framework. Since we have applied strict selection rules, most

of the collected bug reports are well-formed, with clear bug

descriptions and actionable code snippets.

C. MOB Labeling

We conduct a manual review on collected issues, focusing

on extracting two characteristics of the MOBs, i.e., symptoms

149

TABLE II
SELECTION PATTERNS AND RESULTS FOR MOB RELATED ISSUES

Repository Filter Count
pytorch/pytorch label:"module: pruning" label:triaged is:issue 15

pytorch/pytorch label:"oncall: quantization" label:triaged is:issue 321

tensorflow/tensorflow label:ModelOptimizationToolkit label:type:bug is:issue 32

tensorflow/model-optimization label:bug is:issue 127

TABLE III
FILTER PATTERNS AND RESULTS FOR INVALID ISSUES

Rule Count Rule Count
Feature request 31 Documentation 10

CI/CD testing 22 Question / enquiry 6

Closed with no comments 55

and root causes. Since our work is the first on MOB analysis,

there are no existing taxonomy criteria to follow. We thus

conduct an iterative labeling process based on the open coding

methodology [43] to produce a stable and comprehensive

taxonomy of the characteristics of MOBs. We explain the

labeling iterations below and defer the results to Section IV.

Iteration 1. We study each of the 371 MOBs, and summarize

their symptoms and root causes based on the code and

discussion in the issues. We take different strategies for issues

with and without a patch.

Issues with a patch. The code-level patch provides useful

information for us to understand the bug. So we extract the

characteristics of patched MOBs from the pull requests and
commits linked to the corresponding issues. For example, in

Tfmot #655, the pull request #607 is referred. We study from

the patch in #607 and learn that the problem is about the

condition check when modifying layers. Therefore the issue

is characterized as a layer operation problem. 115 of the MOBs

have a clear patch that exactly fixes the bug.

Issues without a patch. For unresolved issues, we first make

sure they are valid based on the rules in Section III-B. Then

we derive their characteristics by analyzing the following

information.

• Error messages in the call stacks. For example, the

description in Tfmot #367 contains the log of exceptions.

We can learn that there is ValueError caused by “Tensor
conversion requested dtype float32 for Tensor with dtype
float16”, which can be characterized as a type problem.

• Input and output from reproduction code. For example,

PyTorch #80501 has input with large integers, and the

output is different as the environment changes. The output

can become negative or exactly zero. So we can confidently

infer that the issue is about numerical problems.

• Comments from framework developers that can explain
the problem. For example, In PyTorch #76304, the de-

veloper replied that “The issue is that the quantized con-
volutions are expecting a symmetric padding”. Therefore,

we can characterize this issue as a missing supporting

problem, which fails to handle a special condition.

While studying the MOBs, we gradually formulate a tax-

onomy to fit the context of ML model optimization in the

following ways: 1) to create subcategories for the types that

are too general for MOBs, and 2) to remove the types that are

not relevant to MOBs. At the end of this iteration, we manage

to compose a preliminary result, which contains two parts: a

MOB-specific taxonomy of symptoms and root causes, and

the strategy we have adopted to understand the three factors

above to decide the category of a MOB.

Iteration 2. Another author is involved in the process of cross-

validating the categorization result. This author refers to the

preliminary result obtained in Iteration 1, and checks whether

the characteristics extracted from the issues conform to the la-

beling strategies in Section III-C. For the issues that this author

does not agree, the two authors discuss them and clarify the

criteria used in the strategies. With the updated understanding

of the strategies, the second author applies another round of

validation to check whether a new disagreement is introduced.

Several rounds of discussions have been conducted to reduce

the disagreements.

Iteration 3. After the calibration of the categorization, all

authors revisit each bug, and agree on every decision regarding

the symptom and root cause.

IV. RESULTS AND FINDINGS

This section presents our analysis of MOBs and main

findings. We investigate three research questions (RQs).

RQ1: What are the general characteristics of MOBs? This

RQ aims to understand the general characteristics of MOBs.

We reveal their symptoms, and also present the temporal

features of their life cycle, including their trends, time to

detection and time to fixing.

RQ2: What are the root causes of MOBs and how are they
specific to model optimization? This RQ aims to understand

why MOBs occur. We are interested in those atypical root

causes that are not captured by existing studies on the bugs of

other ML components or life cycle stages.

RQ3: What are main obstacles for detecting MOBs?
This RQ focuses on model optimization-specific obstacles that

cause challenges for MOB detection.

A. RQ1: General Characteristics of MOBs

We first summarize the characteristics of the MOBs in the

wild, focusing on their symptoms and life cycle.

1) Symptoms: MOBs exhibit four types of symptoms:

Sym1: Crash. The optimizer exits unexpectedly, and no model

is returned.

150

TABLE IV
THE DISTRIBUTION OF MOB SYMPTOMS

Framework Crash OC MAD POP UnDec Total
PyTorch 149 31 22 19 9 230

TensorFlow 82 34 15 4 6 141
Total 231 65 37 23 15 371

OC: Output Corruption MAD: Model Accuracy Degradation
POP: Poor Optimization Performance UnDec: Undecidable type

v0.1

v1.3

v0.3
v0.4 v1.8

v0.7

v1.11

v1.12

Fig. 2. Trends of MOBs v.s. Versions of PyTorch and TensorFlow

Sym2: Output corruption. The optimizer outputs a malformed

model, which becomes incompatible with originally compati-

ble ML programs.

Sym3: Model accuracy degradation. The prediction accuracy

of the model after optimization drops severely.

Sym4: Poor optimization performance. The optimizer con-

sumes excessive computational resources (e.g., CPU and stor-

age) or takes abnormally long to complete.

Undecidable type. The symptom is not described clearly in

the issue, without the expected and actual behavior.

Table IV shows the distribution of the symptoms of our

studied MOBs. Crash (Sym1) is the most reported type; 61.3%

of MOBs in PyTorch and 65.7% in TensorFlow produce a

crash. This may be because this symptom is easily observable

by the developers and users. Apart from the crash, 31% of

MOBs in PyTorch and 23% in TensorFlow lead to output

corruption (Sym2). Most of them produce incorrect models

that lead to errors when their downstream consumers load

them. Therefore, they are also noticeable to users, and the

reported issues often contain detailed bug descriptions. The

remaining two types of symptoms (Sym3 and Sym4) are rare.

Only 2.5% in PyTorch and 2.2% in TensorFlow are related to

model accuracy degradation (Sym3), and the poor optimization

performance (Sym4) MOBs account for 5% in PyTorch and

2.2% in TensorFlow. A possible reason is that these two types

of symptoms are often subtle and users cannot confidently

determine whether the degradation and poor performance are

caused by bugs or other factors.

2) Life cycles: We investigate the temporal features of

MOBs, to reveal their life cycles from three aspects, trends

in the development process, time to detection, and time to fix.

Trends of MOBs. Figure 2 presents the time points when the

MOB-related issues are submitted on GitHub, and how their

fluctuation relates to the major changes in each framework.

Fig. 3. Time to detection of MOBs grouped by frameworks and symptoms

For PyTorch, the first increase occurred in 2019 Q4, because

the v1.3 released on 11 Oct 2019 introduced the quantization

APIs for the first time. The next surge happened on 5 Mar

2021, when the v1.8 changed the signature of quantization

APIs, and the way of quantization for different layers, includ-

ing relu and sigmoid. The v1.11 released on 11 Mar 2022,

which introduced new quantization operations and pruning

strategies, also caused another significant increase.

A similar phenomenon is observed in TensorFlow. The

increases of MOB reports align to new versions and features

in the model optimization module of TensorFlow, including

v0.3 (initial release of the Keras quantization API), v0.4 (sup-

port more convolutional and dense layers that are commonly

used in Keras) and v0.7 (switch to new default wrapper).

Time period to detection. For each MOB, we figure out two

critical time points: (1) when the MOB is introduced and (2)

when it is reported in an issue. As there is no clear detection

time, we take the report time of a MOB as the estimated time
point of detection, on the assumption that developers/users

usually report new bugs shortly after they detect them. To

find the time point when the MOB is introduced, we study its

relevant pull request and/or commits that fix it. We then use git
blame to track the historical commits and locate the commit

that introduces the bug. We use the time of this commit to

indicate the time point of introduction.

We have found 115 MOBs with a clear fixing commit, and

found the time point of introduction for all of them. Figure 3

presents our results, with breakdowns in terms of frameworks

and symptoms. Most MOBs have been existing for a long time

(>30 days) until they are detected. Among them, the MOBs of

poor optimization performance (Sym4) generally take a longer

time (over 90 days and even 1 year) to be exposed.

Time to fix. We use the time of the pull request or commit that

fixes the MOB as the time point of fix, and use the time period

between it and the time point of detection to estimate the time

period to fix the MOB. Figure 4 shows the results. The time

period to fix turns out to be extreme for fixed and unresolved

MOBs. Most fixed MOBs take short time to be resolved, while

the unresolved issues are usually kept open for a long time.

We study the code and discussion in each issue to figure out

the reason for this difference. We find that the fixing of issues

depends on the difficulty level of reproduction, which can be

influenced by the following factors.

• Non-crashing bugs. Bugs of Sym2, Sym3 and Sym4 are

151

Fig. 4. Fixing status of MOBs grouped by symptoms

harder to reproduce than crash (Sym1), because the output

of ML programs is stochastic in nature.

• Complexity of models. Buggy functions for a single tensor

are more likely to be fixed, while the problematic opti-

mizations for a complete model is usually too complex to

address, requiring more efforts of developers.

Answer to RQ1: The reported MOBs mainly cause four

types of symptoms, including crash, output corruption,

accuracy degradation and poor performance, where crash
accounts for a majority. MOBs are mostly introduced

during the first introduction or the major updates on the

optimizers of the ML frameworks. Most MOBs are hidden

in the codebases for a long time (>90 days) before they

are discovered and reported.

B. RQ2: Root Causes of MOBs

In this section, we present the root causes of MOBs, and

discuss their uniqueness.

1) Root causes: Our labeling process (Section III-C) cate-

gorizes the root causes of MOBs into five different types. Be-

low, we provide their definitions, analyze their consequences,

and present typical MOBs as illustrative examples.

RC1: Wrong type (89). The MOBs are triggered when an

input of a wrong type is passed into the optimizer. Such a

case happens when an input model of unsupported format is

fed into the optimizer or a function makes wrong assumptions

of input parameter types, especially when the inputs are of

collection types. We observe 89 such cases.

Consequence. As shown in Figure 1, the model optimizer

first loads the input model and converts it to an intermediate

representation (IR). When the optimizer fails to support or

makes wrong assumptions on the format of the input model, an

exception of TypeError, AttributeError or ValueError could be

triggered, which may crash the program. This type of MOBs

can also occur when the optimizer processes the IR, which

may consist of various collections like lists or dictionaries,

but assumes all elements of the IR are of the same type.

Illustrative example. We show an MOB of tfmot

#753 in Figure 5. After S1 stage, the function

collect_prunable_layers aims to select layers for

pruning. However, the input model may contain a collection

of models (submodules) instead of layers. The original code

assumes that all elements are of the layer type and thus fails

Input model

Intermediate
collections

Submodels
Layers
Metadata

[Layer, Model, Layer, …]

[Layer, Model, Layer, …]

Get prunable layers
Unpack model and get
the desired elements [Layer, Layer, Layer, …]

Get prunable layers
Return all elements of
PruneLowMagnitude

Crash

OK

Buggy

Fixed

Flatten the layers
Compare & sort

elements in the list

Fig. 5. Data/control flow diagram showing the MOB tfmot #753 and its fix

Program start
Original Dimensions

Bug: Downscale
once for both

1D and 2D

2x Scaled Dimensions

Upscale twice
for 2D

Load the model
Prepare to quantize

(Upscale)

Apply the quantization

Cleanup
(Downscale)

Save the model

Program output
1x Scaled Dimensions

Running Steps Data Shape

(Should be original)

Fig. 6. Data flow of PyTorch #59200

to handle such a case. Next, the output prunable layers are

passed to a sorting step, where comparisons among these

layers are performed. Since the comparisons between layers

and models are not implemented, this step can be invalid and

leads to a crash. To fix this issue, the developer has to add a

type check and process different types in separate branches.

RC2: Unexpected shapes (41). The optimizers operate fre-

quently on tensors. Improper transformations or implemen-

tations can easily produce malformed tensors of unexpected

shapes, which cannot be digested by further operations.

Consequence. Such a MOB often raises an exception of

IndexError, KeyError or AssertionError. This may cause the

program to crash or corrupt the output.

Illustrative example. Figure 6 demonstrates a typical exam-

ple of shape handling in PyTorch #59200. During batch nor-

malization, the optimizer needs to create two fake dimensions

for a 2D input and remove them after processing. However, the

original code of PyTorch only removes one, and as a result,

the structure of the layer breaks. With such layers, the further

computation could produce wrong results or cause a crash.

RC3: Missing supporting data types (31). The data struc-

tures used by the optimizers may contain various attributes.

The MOBs may appear when some attributes are handled

incorrectly, although the data type is claimed to be supported.

Consequence. The issue can occur in the I/O stage or the

processing stage. In the I/O stage, such an issue is triggered

by some controlling flags during the conversion step. In the

processing stage, such an issue is raised during computation,

since the precision is not supported and thus the operation

cannot be completed. Such MOBs usually cause exceptions

of TypeError or AttributeError.

Illustrative examples. Since PyTorch did not support some

152

Input model

Intermediate
collections

Look up configuration

Quantize configuration registry

- _no_quantize(layers.UpSampling2D),

+ _QuantizeInfo(layers.Upsampling2D,

[], [], True),

Quantize
Process OK

Fix: Found
configuration

Before:
No configuration

Error
unsupported

Fig. 7. Diagram of tfmot #372

specific precision of floating points in its early versions,

several issues, such as #42351 and #32775, which are related

to FP16 types, were raised by users. To mitigate the problem,

a pull request #52612 is created to track the status of FP16

support.

For controlling flags related bugs, TFOpLambda is a spe-

cial logic layer with the following flag to guard metadata:

_preserve_input_structure_in_config. But, dur-

ing the quantization step, this flag prevents the adaption of

the format and leads to a TypeError exception. This is due to

unsupported handler for this type of layer (shown below in

Listing 1 and 2).

1 # Preserve all argument data structures
2 # when saving/loading a config
3 self._preserve_input_structure_in_config = True

Listing 1. Special Flag for the TFOPLambda Layer

1 if input_tensors in not None:
2 if not layer._preserve_input_structure_in_config:
3 input_tensors = (
4 # A necessary operation without which a
5 # type mismatching will occur later
6 ...
7 output_tensors = ...

Listing 2. Quantization code fails to handle special flag correctly

RC4: Missing supporting layer operations (109). During

model optimization, some layers might need special handling

mechanisms, which can be missed by the implementation.

Consequence. The program clearly reports unsupported

layers and raises a runtime exception.

Illustrative example. We take tfmot #372 as an illustrative

example. As shown in Figure 7, before quantizing a layer,

TensorFlow searches for its configuration. However, such

configurations might be undefined in the configuration registry,

which leads to an unsupported error. In fact, the compatibility

of all kinds of layers is not mentioned in the documentation.

As a result, there is little chance for the users to know that

their design of networks is not suitable for quantization until

they run the code. After the quantization of this type of layer

(i.e., Upsampling2D) is supported by the framework, the

configuration is added to the registry so that the program can

find it and apply further processes successfully.

RC5: Metadata conversion errors (22). MOBs can occur

when the optimizer loses or mistakenly changes the metadata

of the input model.

Consequence. Such an issue usually occurs when the ML

model is loaded or saved. For example, the names of original

Input model
Full copy of layers

Name is missingComplete info

Layers with the name same

Wrong result or runtime error

Transform the layer

Retrieve the values in the layer

Make a copy of the layer

Return a new layer (name is discarded)

Select the layer with name

The layer selected may not be the desired one

Layers use default names

kernal:0, bias:0, …

Complete
info

Fig. 8. Diagram of tfmot #317

Fig. 9. Root Cause Distribution among Optimization Bugs

model layers are not encoded and stored properly during S1
stage. As a result, in the S4 stage, the optimizer is not able

to recover and produce the correct name for the output, which

may cause the model to behave unexpectedly, because the

application may select the layers with their names. In addition,

some information of the layer is not changed after conversion.

For example, the name and shape of the original layers should

be encoded for the intermediate model. The encoded name is

important for quantization or pruning. The layers that are not

encoded correctly may cause crashes or produce wrong results.

Illustrative examples. Issue #889 in tfmot is a typical case

of data loss. In the code, the data type of the layer is assigned

manually by the developer. The conversion encodes the layer

name with the new data type and also decodes the name with

it. As a result, the output has a different layer from the input.

Issue #317 in tfmot shows an example of wrong metadata

conversion. The process is shown in Figure 8. The code aims to

encode the name of the weights in the layers. However, it fails

to handle the sub-classed layer. As a result, the weights from a

regular layer and sub-classed layer have the same name, which

will cause an error of duplicated keys, resulting in wrong

values of weights or exceptions.

Others. Besides the above five categories of MOBs, 12 cannot

be categorized into any category. Their root causes are diverse,

including legacy or opaque issues.

2) Statistics of root causes: We summarize the overall

statistics in Figure 9. Note that 45 MOBs are excluded from

this figure as their root causes cannot be determined due to

non-reproducible or unresolved issues. In general, the missing

supporting data types (RC3, 31) and layer operations (RC4,

109) are the major root causes of the MOBs. They account

for 49.3% in total. The wrong type (RC1, 89) is the second

common root cause. We also classify these root causes based

on the optimization stages (see Section II-B), and the statistics

are shown in Figure 9.

153

3) Comparison with other bugs in ML frameworks: MOBs

demonstrate their uniqueness compared with bugs in other

components or life cycle stages of modern ML frameworks.

The wrong type bugs are found to be the most frequent

bugs in other components [27], [30], [31], [44], [45], in-

cluding model compiling [30]. This may be because Python

uses a dynamic typing system, and its grammar offers much

flexibility. In fact, the problem can occur in most Python

programs, as it can be introduced by almost every part of

the code, such as the assignments of literal values, the orders

of arguments passed to methods, and the elements in a list

or dictionary. In contrast, MOBs are mostly caused by special

operations on models or development processes in the context

of model optimization. First, model optimization entails a

large number of operations that change data values and types.

For example, quantization changes a float to an integer of

quantized data type (e.g., quint8), which is different from

Python’s built-in integer type. This may cause the missing

supporting data types (RC3) and layers operations (RC4)

Second, model optimization changes the model structure by

pruning, and changes the metadata including layer type by

quantization. This may cause the unexpected shapes (RC2)

and metadata conversion error (RC5). Third, ML frameworks

evolve fast, and introduce various new layers and model types.

The optimization techniques may fail to keep the same pace,

causing the missing supporting data types (RC3) and layer

operations (RC4).

Answer to RQ2: Five main root causes of MOBs

are identified. The majority of MOBs arise with model

optimization-specific operations and processes distinctive

from other components of ML frameworks. This raises

the necessity of future studies specifically focusing on

MOBs to facilitate their detection and fixing.

C. RQ3: Challenges of MOB Detection

Our study in RQ1 (Section IV-A) reveals that more than

70% of patched MOBs take over three months to get discov-

ered and reported. Therefore, we investigate the reasons why

MOBs are hard to detect in this research question.

We review existing approaches to detecting bugs from ML

frameworks, and identify the factors their detection techniques

rely on, as summarized in Table V. We then assess the

feasibility to obtain them from model optimizers, and we have

figured out four obstacles listed in Table VI.

1) Obstacles: Below are the four identified obstacles.

Ob1: Hybrid programming languages. The model optimiz-

ers of TensorFlow and PyTorch are both implemented in a

hybrid way using C++ and Python.

Ob2: Diversified hardware and platforms. The data repre-

sentation, value ranges, and data operations may have huge

differences across hardware and platforms.

Ob3: Large input data with complex constraints. An ML

model typically consists of a huge amount of data, and many

constraints on the types and shapes should be satisfied.

TABLE V
EXISTING APPROACHES TO DETECTING BUGS IN ML FRAMEWORK

Approach Factors Techniques to obtain factors
Static F1: Call graph Abstract syntax tree [46]–[48]
analysis F2: Data abstraction Pointer analysis [46]

Tensor partitioning [47]
Suspect loss estimation [48]

Testing F3: Input generation Model-based [48]–[50]
F4: Test oracles Class-based distance [49]

Mean absolute deviation [49]
F5: Mutation strategies Genetic algorithms [50]

Gradient back-propagation [48]

TABLE VI
FACTORS THAT MAY BE IMPACTED BY OBSTACLES IN OPTIMIZERS

Obstacles Affected Factors # MOBs
Ob1: Hybrid PL F1: Call graph 20

F2: Data abstraction
Ob2: Hardware and platform F2: Data abstraction 12

F4: Test oracles
Ob3: Data constraints F3: Input generation 42

F5: Mutation strategies
Ob4: Volatile results F4: Test oracles 9

F5: Mutation strategies

Ob4: Volatility of ML models. The weight values and layer

structures of ML models are subtle and sensitive. Altering

them may cause significant changes in the model performance

like accuracy and fidelity.

2) Challenges for static analysis: Static techniques analyze

programs based on their control flow or data flow. Gathering

either type of information is non-trivial in model optimizers.

F1: Call graph construction. Call graph (CG) construction

is an essential and prerequisite step to conducting inter-

procedural static analysis. CG construction for hybrid pro-

grams remains challenging nowadays, despite some recent

advances [51]. Due to Ob1, it can be difficult to precisely

link the callee function on the C++ side to the call site

on the Python side, since identifying the calling relationship

may require non-static information, such as type and value

information of input parameters, as well as the configuration,

which is constructed dynamically by Python.

Illustrative examples. PyTorch #58055 is a concurrency

bug caused by a data race in the low-level C++ code. The

Python code invokes function quantize_per_tensor,

whose implementation is located at the C++ side. PyTorch run-

time identifies the actual callee function through an internal

module named torchgen, which dynamically addresses native

functions. Such dynamic behavior and internal mechanism

of run-time make existing static analyzers fail to extract the

precise calling relationship among code in different languages

and, as a result, hinder them from detecting this bug.

F2: Data abstraction. To analyze the data flow, static ana-

lyzers usually construct an abstract representation of the data

for their types and values. First, hybrid languages (Ob1) can

obstruct the process of data abstraction. Pointer analysis [46]

requires the information of all functions that reference the

154

data. The track of data in Python can easily get lost when

coming to C++. Diversified hardware and platforms (Ob2) also

affect the correctness of data abstraction. For example, tensor

partitioning [47] techniques are based on value analysis. How-

ever, possible values, especially integers, may be hardware-

or platform-dependent, which can be largely unknown during

static analysis. Existing studies listed in Table V do not

consider how the data is represented in native code, so they

may fail to detect cross-platform bugs in optimizers.

Illustrative examples. PyTorch #60077 is an integer over-

flow bug reproducible on ARM platforms. Yet, the code runs

correctly on x86 platforms. This is due to the width distinction

of integer variables between the two platforms. Specifically, an

integer occupies 64 bits on x86 while 32 bits on ARM, and

thus an input value of 232 will trigger a bug only on ARM

platforms.

3) Challenges for dynamic testing: Dynamic testing gen-

erates test cases to expose potential bugs. The test cases

generated by existing techniques may not be valid, or effective

in testing model optimizers.

F3: Input generation. Diverse test cases are necessary to

cover possible occasions and detect the ones that can cause a

bug. Existing techniques [50], [52] generate inputs by mutating

seed models. However, they cannot be directly applied to

expose MOBs in model optimizers. Due to Ob3, mutating

model layers is a non-trivial task. Model layers and weights

usually have a number of constraints, which are specified

explicitly or implicitly, to be satisfied. Even a tiny mistake

could invalidate the resulting ML model. Besides the internal

constraints imposed by a certain layer, mutation methods also

need to consider the layer’s external constraints posed by other

layers, thus complicating the whole mutation procedure.

Illustrative examples. The models reported in tfmot #753

and PyTorch #67030 contain a special type of layer called sub-
model, which is different from other layers in terms of layer

construction and usage. It requires the test generator to be

aware of such special layers and specific mutation operators

to transform them. Otherwise, the generated test cases will

always miss the layer and fail to detect its bug.

PyTorch #63234 and #63356 are bugs due to incorrect

handling of data binding between Python and C++. The test

cases for such MOBs are difficult to construct because the

data in Python are of dynamic types, and models contain

complex structures and attributes. Some attributes are stored in

a dictionary, and the possible keys and values are not defined

explicitly in the code.

F4: Test oracles. To test ML frameworks, existing dynamic

techniques need to construct test oracles. The bugs are exposed

by executing the frameworks and checking if some pre-defined

assertions are violated. Different from crashing bugs that can

be easily observed, non-crashing bugs are often neglected by

developers and users, as confirming them is a non-trivial task.

Towards this problem, an existing study [49] in detecting ML

framework bugs proposes to compare inference results. How-

ever, such a technique is not applicable in detecting MOBs

mainly because of Ob4. The output of model optimization

is another model whose structure and weights may greatly

differ from the input model. Ob2 is also a severe problem for

constructing test oracles, because the behaviors on different

platforms may be naturally different. So far, there exist no

effective criteria to facilitate validating such inconsistencies.

Illustrative examples. Tfmot #722, #450 and PyTorch

#29024 report bugs about the optimization results. However,

when users suspect the correctness of the optimizer, it is not

easy to provide solid evidence to support their arguments.

Sometimes the framework maintainers cannot even track the

issues, and as a result, these issues remain open as of March

2022. On the other hand, tfmot #599, #439 and PyTorch

#46180 present some goals that should be optimized, such as

the size and the prediction efficiency. These problems are also

hard to address, because the pre-set goals may not be reachable

at all. The developers and users had a long discussion and

finally agreed that these are non-bug issues. The unsatisfactory

outputs are due to the inherent limitation of the optimization

algorithm.

Tfmot #635 shows different behaviors on CPU and GPU,

where CPU returns 0 but GPU returns a tiny floating point

number. Similarly, Tfmot #771, PyTorch #58130, #41115 and

#36802 are all specific to CUDA GPU acceleration. These

cases are using different setups, including graphic card models,

CUDA driver versions and builds of frameworks. According to

the developers’ discussion, framework maintainers even cannot

reproduce the issues due to the lack of specific hardware.

F5: Mutation strategies. For dynamic testing, the mutation

strategies are applied to analyze the feedback of previous test

cases and guide the generation of new test cases. Existing

studies [48], [50] use search-based algorithms to guide the test

case generation and make the input more likely to trigger bugs.

For MOBs, such searching strategies may not be effective.

First, due to Ob3, the mutated variants generated by current

algorithms can be invalid. The algorithms are designed to

mainly mutate weights and external values. They do not

consider the constraints of layer structures. For valid variants

generated by such algorithms, the layer structures are often

not mutated sufficiently, so the variants are not effective to

expose MOBs. For the variants that mutate layer structures

significantly, very few of them are valid for testing.

Second, Ob4 makes it hard to calculate a target for guiding

the generation, because there are no suitable test oracles to

help judge whether a model optimizer behaves properly or

not. Current algorithms usually rely on the comparison of

inference results, invalid numbers (i.e., NaN, infinity) and

crashes. As discussed earlier, the comparison criteria for the

results of model optimizers are still missing. The quantization

technique of model optimization is involved with integers,

which has exclusive problems on overflow (PyTorch #60077),

but the current algorithms for invalid numbers mainly deal

with floating point numbers.

Answer to RQ3: Four model optimization-specific obsta-

cles can cause prominent challenges in detecting MOBs.

155

Existing approaches are either inapplicable because of the

hybrid programming languages and diversified platforms,

or ineffective because of complex data constraints and

volatile outputs.

V. DISCUSSION

A. Implications

Based on our bug characterization and the analysis of

challenges, we provide several suggestions for developers

and users, in order to help improve the model optimization

modules in ML frameworks.

Towards Correct Usage. Users should realize that the model

optimization modifies ML models in multiple aspects apart

from the weights. The modification of data type and layer

structure may influence the usage of optimized models, such

as the methods of saving and loading models.

Towards Rigorous Development. First, it is recommended

to introduce sufficient regression tests to validate the newly

supported layers or configurations before a new version is

released. Second, developers should pay attention to the side

effects of an optimization operation, and identify whether to

introduce, remove, or keep the metadata.

Towards Effective Detection. First, it is necessary to construct

a clear function mapping between the code in different pro-

gramming languages, so that static analysis tools can figure out

the low-level code in depth and find potential bugs. Second,

test cases for detecting MOBs should cover different kinds of

layers sufficiently.

B. Feedback from the Community

To validate our findings, we have submitted issue comments,

pull requests, and email surveys to the community. Some

of our analyses on the operation bugs are confirmed as a

worthwhile problem (e.g., tfmot #867). Our pull requests for

preventing shape errors in quantization are also accepted and

merged (e.g., pytorch #81547).

C. Limitations and Threats to Validity

Our study focuses on understanding the landscape of MOBs

in popular ML frameworks. To the best of our knowledge, this

is the first comprehensive study on MOBs. However, as the

first attempt in this area, our study has several limitations that

we target to address in our future work.

First, our study selects extensively used open-source ML

frameworks and collects MOBs from their code repositories.

Although the collected data are representative, there is a

chance that MOBs in other ML frameworks show different

characteristics. Second, as there is no existing study on MOBs,

we have to design our own selection criteria to identify MOBs.

Because the number of issues is huge, our current criteria

contain some strict conditions (e.g., issues should have specific

labels) to avoid retrieving too many invalid issues, but we may

miss real MOBs. In the future, researchers may further explore

how to formulate better criteria to collect MOBs. Third, we

have to resort to manual efforts to propose labels and patterns

for investigating MOB symptoms and root causes. This may

be unavoidable as the first study in this area. Although we

have checked our taxonomy across the authors based on the

open coding methodology to reduce random errors from one

person, biases or mistakes may still exist. Fourth, although our

data collection has covered the entire development process of

the model optimizers, the obtained dataset is still relatively

small. Future work could consider extending our dataset by

incorporating other data sources, such as the developer forums

of ML frameworks, and Q&A websites like StackOverflow.

D. Comparison with Optimization Step in Model Compiling

Deep learning model compiling has a step called optimiza-
tion [53], which is often confused with model optimization. It

is worth discussing the fundamental differences between these

two. We refer the reader to a recent empirical study [30] for

bugs in model compiling.

Targets. Model compiling mainly aims to compile a model

to be compatible with a particular platform, while model

optimization aims to optimize a model’s complexity and

performance. Model optimization has to alter the numerical

or structural details of models, so it is more subject to new

bugs like mis-shaping (RC3) and unsupported types (RC4).

Strategies. Model compiling typically adopts conservative

strategies, e.g., zero-dim-tensor elimination, to preserve the

model fidelity. Model optimization is more aggressive, e.g.,

manipulating non-zero parameters, so it is more likely to lead

to type and shape errors that rarely occur in model compiling.

VI. RELATED WORK

Our work explores one type of deep learning bugs, so we

present a review of existing work on deep learning bugs.

Bugs in deep learning frameworks. A line of research

focuses on the general software bugs in deep learning frame-

works. Jia et al. [44] analyze the symptoms and root causes

of 202 bugs in TensorFlow. Chen et al. [45] conduct a more

comprehensive study of the DL framework bugs in PyTorch,

MXNet and DL4J. They analyze the bugs with more aspects,

including the user-level APIs, graph-level implementation,

operation implementation, general utility and environment-

dependent processing.

In addition to the general bugs of deep learning programs,

many recent studies focus on specific types of bugs in deep

learning programs. Chen et al. [31] explore the faults when

deploying deep learning applications on mobile devices. Cao

et al. [54] present the characterization of performance bugs that

can slow down the execution of DL systems. Zhang et al. [47]

target the numerical bugs that occur in DL programs and

propose an approach of static analysis on tensor partitioning

and affine relation to detect them. Yan et al. [48] follow

this work and manage to expose the numerical bugs with

dynamic techniques, based on gradient back-propagation. Shen

et al. [30] conduct a study on the taxonomy of symptoms and

root causes of bugs in DL compilers, which converts the input

models into low-level programs for different hardware to run.

156

Bugs in use of deep learning frameworks. As deep learning

has been extensively used in various domains, some studies

explore the bugs in the software using deep learning frame-

works. Zhang et al. [27] mainly focus on the life cycle of a

TensorFlow-based software. They collect 175 real-world bugs

from GitHub and StackOverflow. By analyzing the symptoms

and root causes of these bugs, they reveal the challenges in

bug detection and localization. Humbatova et al. [25] expand

their study to Keras and PyTorch. They select 564 projects

that use the three frameworks and collect 375 bugs to study.

Their taxonomies are characterized by structured interviews

with researchers and practitioners, and this work confirms that

the bugs could be experienced in practice. Islam et al. [26]

further expand the study to Caffe and Theano. They analyze

970 collected bugs for the root causes, and reveal common

anti-patterns when using the frameworks.

VII. CONCLUSION

In this paper, we present the first systematic study of

machine learning model optimization bugs by analyzing 371

issues retrieved from the two most popular machine learning

frameworks on GitHub (i.e., TensorFlow and PyTorch). We

categorize these bugs based on their symptoms and root

causes, and summarize the challenges in detecting them. Based

on our findings, we also propose suggestions for practitioners

to help them detect and avoid model optimization bugs when

developing or maintaining machine learning frameworks.

ACKNOWLEDGMENT

We thank our anonymous reviewers for their constructive

comments and suggestions on the paper. This work is partially

supported by the National Key Research and Development

Program of China under Grant No. 2019YFE0198100 and the

National Natural Science Foundation of China under Grant

No. 61932021, and the University of Queensland under the

UQ NSRSG grant and the Global Strategy and Partnerships

Seed Funding.

REFERENCES

[1] M. Namysl and I. Konya, “Efficient, lexicon-free ocr using deep
learning,” in 2019 international conference on document analysis and
recognition (ICDAR). IEEE, 2019, pp. 295–301.

[2] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications: an
overview,” in 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, 2013, pp. 8599–8603.

[3] M. Bakator and D. Radosav, “Deep learning and medical diagnosis: A
review of literature,” Multimodal Technologies and Interaction, vol. 2,
no. 3, p. 47, 2018.

[4] G. Litjens, C. I. Sánchez, N. Timofeeva, M. Hermsen, I. Nagtegaal,
I. Kovacs, C. Hulsbergen-Van De Kaa, P. Bult, B. Van Ginneken, and
J. Van Der Laak, “Deep learning as a tool for increased accuracy and
efficiency of histopathological diagnosis,” Scientific reports, vol. 6, no. 1,
pp. 1–11, 2016.

[5] S. Ramos, S. Gehrig, P. Pinggera, U. Franke, and C. Rother, “Detecting
unexpected obstacles for self-driving cars: Fusing deep learning and
geometric modeling,” in 2017 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2017, pp. 1025–1032.

[6] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning
and Systems, vol. 3, pp. 800–811, 2021.

[7] X. Dai, I. Spasić, B. Meyer, S. Chapman, and F. Andres, “Machine
learning on mobile: An on-device inference app for skin cancer detec-
tion,” in 2019 Fourth International Conference on Fog and Mobile Edge
Computing (FMEC). IEEE, 2019, pp. 301–305.

[8] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable
effectiveness of data in deep learning era,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 843–
852.

[9] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A comprehensive
study on challenges in deploying deep learning based software,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2020, pp. 750–762.

[10] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 810–822.

[11] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[12] M. H. Meng, G. Bai, S. G. Teo, and J. S. Dong, “Supervised robustness-
preserving data-free neural network pruning,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.00783

[13] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 5687–5695.

[14] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 5058–
5066.

[15] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[16] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
“Adaptive quantization for deep neural network,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[17] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” in International Conference on Learning
Representations, 2018.

[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}: A system
for {Large-Scale} machine learning,” in 12th USENIX symposium on
operating systems design and implementation (OSDI 16), 2016, pp. 265–
283.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems (NeurIPS), vol. 32, 2019.

[20] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” ACM Sigplan Notices, vol. 49, no. 6, pp. 216–226,
2014.

[21] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” ACM SIGPLAN Notices, vol. 50, no. 10,
pp. 386–399, 2015.

[22] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code mutation,”
in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
2016, pp. 849–863.

[23] M. Rigger and Z. Su, “Detecting optimization bugs in database engines
via non-optimizing reference engine construction,” in Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2020, pp. 1140–1152.

[24] GitHub.com, “Issues · tensorflow/model-optimization,” Mar 2022.
[Online]. Available: https://github.com/tensorflow/model-optimization/
issues/

[25] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, “Taxonomy of real faults in deep learning systems,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE), 2020, p. 1110–1121.

157

[26] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive
study on deep learning bug characteristics,” in Proceedings of the 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2019, p. 510–520.

[27] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2018, pp. 129–140.

[28] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, “An
empirical study on program failures of deep learning jobs,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 2020, pp. 1159–1170.

[29] Y. Xiong, Y. Tian, Y. Liu, and S. Cheung, “Towards actionable
testing of deep learning models,” SCIENCE CHINA Information
Sciences, 2022. [Online]. Available: https://www.sciengine.com/SCIS/
doi/10.1007/s11432-022-3580-5

[30] Q. Shen, H. Ma, J. Chen, Y. Tian, S.-C. Cheung, and X. Chen, “A
comprehensive study of deep learning compiler bugs,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2021, pp. 968–980.

[31] Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, and X. Liu, “An
empirical study on deployment faults of deep learning based mobile
applications,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 674–685.

[32] A. Makhshari and A. Mesbah, “Iot bugs and development challenges,”
in 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering (ICSE). IEEE, 2021, pp. 460–472.

[33] TensorFlow, “Tensorflow model optimization,” Mar 2022. [Online].
Available: https://www.tensorflow.org/model optimization/guide

[34] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for
machine learning: Challenges and opportunities,” in 2017 IEEE Custom
Integrated Circuits Conference (CICC). IEEE, 2017, pp. 1–8.

[35] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “Dlau: A scalable
deep learning accelerator unit on fpga,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 3, pp.
513–517, 2016.

[36] PyTorch, “Quantization,” 2019. [Online]. Available: https://pytorch.org/
docs/stable/quantization.html

[37] ——, “Pruning tutorial,” 2021. [Online]. Available: https://pytorch.org/
tutorials/intermediate/pruning tutorial.html

[38] J. Hale, “Deep learning framework power scores 2018,”
Nov 2018. [Online]. Available: https://www.kaggle.com/discdiver/
deep-learning-framework-power-scores-2018

[39] Microsoft, “Cntk network optimizations,” Jan 2018. [On-
line]. Available: https://github.com/microsoft/CNTK/blob/v2.7/Manual/
Manual How to use network optimizations.ipynb

[40] “Mxnet python api.” [Online]. Available: https://mxnet.apache.org/
versions/1.7/api/python/docs/api/

[41] “Eclipse deeplearning4j.” [Online]. Available: https://deeplearning4j.
konduit.ai/

[42] Keras, “Keras documentation: The keras ecosystem,” 2022. [Online].
Available: https://keras.io/getting started/ecosystem/

[43] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: a critical review and guidelines,” in Proceedings
of the 38th International Conference on Software Engineering (ICSE),
2016, pp. 120–131.

[44] L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “An empirical study
on bugs inside tensorflow,” in International Conference on Database
Systems for Advanced Applications. Springer, 2020, pp. 604–620.

[45] J. Chen, Y. Liang, Q. Shen, and J. Jiang, “Toward understanding deep
learning framework bugs,” arXiv preprint arXiv:2203.04026, 2022.

[46] J. Dolby, A. Shinnar, A. Allain, and J. Reinen, “Ariadne: Analysis for
machine learning programs,” in Proceedings of the 2nd ACM SIGPLAN
International Workshop on Machine Learning and Programming Lan-
guages, ser. MAPL 2018. Association for Computing Machinery, 2018,
p. 1–10.

[47] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.-C. Cheung, and T. Xie, “De-
tecting numerical bugs in neural network architectures,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2020, pp. 826–837.

[48] M. Yan, J. Chen, X. Zhang, L. Tan, G. Wang, and Z. Wang, “Exposing
numerical bugs in deep learning via gradient back-propagation,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2021, pp. 627–638.

[49] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: cross-backend
validation to detect and localize bugs in deep learning libraries,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 1027–1038.

[50] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, “Audee: Au-
tomated testing for deep learning frameworks,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 486–498.

[51] A. M. Bogar, D. M. Lyons, and D. Baird, “Lightweight call-
graph construction for multilingual software analysis,”arXiv preprint
arXiv:1808.01213, 2018.

[52] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning
library testing via effective model generation,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2020, p. 788–799.

[53] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,
G. Yang, and D. Qian, “The deep learning compiler: A comprehensive
survey,” IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 3, pp. 708–727, 2021.

[54] J. Cao, B. Chen, C. Sun, L. Hu, and X. Peng, “Characterizing per-
formance bugs in deep learning systems,” CoRR, vol. abs/2112.01771,
2021. [Online]. Available: https://arxiv.org/abs/2112.01771

158

